Planning Overview

Year 4 Addition and Subtraction

Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.
Estimate and use inverse operations to check answers to a calculation.
Solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why.

4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)

	Teaching and Learning
Using Place	Known facts
Value to aid mental calculation Addition and	Children should be able to recognise when known facts will help them with a calculation. Use patterns of calculations and concrete resources like place value counters to help them to identify this for themselves.
of multiples	Ask "What do you notice?"
of 1, 10, 100	$5+3=8$
and 1000.	$50+30=80$
	$500+300=800$
Same number of digits no bridging	'I have 5 ones added to 3 ones which has given me 8 ones. 5 tens and
	3 tens has given me 8 tens. 5 hundreds and 3 hundreds has given me 8 hundreds'
	Can the children see how the numbers have been scaled?
	'I have made each number 10 times bigger'
	'I have made each number 100 times bigger'
	Can you continue the pattern?
	Can you use place value counters to prove this is true?
	$\begin{aligned} & 10 \text { (10) } 10+1010=\begin{array}{l} 10 \\ 10 \\ 10 \\ 10 \end{array} 1010 \text { (10) } 10.10 \text { (10) } 10 \end{aligned}$
	Will $5000+300$ be in the pattern? Why not?
	'One number has been made 1000 times bigger whereas the other number has been made 100 times bigger'

	Repeat for subtraction $\begin{aligned} & 8-3=5 \\ & 80-30=50 \\ & 800-300=500 \end{aligned}$ Can you continue the pattern? Can you explain the pattern? Provide the children with a fact and see what related facts they can work out. Children may like to use a bar model to show the related facts. Can the children link this to missing number calculations? 8000 - ? = 3000. If the children are secure with using a bar model, this will support them with identifying which part of the bar model represents the missing number. 'I can scale each number down to make the calculation $8-$? $=3.1$ know $8-5=3$. I can now scale my missing number up by 1000 to answer my original question.' Encourage the children to look at patterns like those below to consider the best way to calculate. Mastery assessment - Left hand column only
	What do you notice about the calculations below? Can you find easy ways to calculate? $\begin{array}{\|l\|l\|l\|} 5000+4000= & 5230+400= & 5023+28= \\ 4000+5000= & 4230+500= & 4023+28= \\ 3000+6000= & 3230+600= & 3023+28= \\ 2000+7000= & 2230+700= & 2023+28= \\ 1000+8000= & 1230+800= & 1023+48= \end{array}$
	What's the same and what's different about each calculation? Developing Reasoning Sometimes/Always/Never If I add 1000 to one side of a calculation and take 1000 off the other side, the calculation will stay the same. Do children see that this works for addition but not subtraction?

	$\begin{aligned} & 3746+600 \\ & +200=3946 \\ & +100=4046 \\ & +300=4346 \end{aligned}$ Mastery assessment - middle and right-hand column Can you order the following calculations from difficult to easy? Why have you put them in this order? $3870+50,6392+400,8367+8,2840+4000$ True or False - The more digits a number has, the more difficult the calculation?
Subtract multiples of 1 , 10,100 and 1000	$\begin{array}{\|l\|} \hline 3424-8 \\ 5320-60 \\ 6330-70 \\ 3400-600 \\ 6300-800 \end{array}$ What would be the best way to partition the number that you are subtracting? Can you explain why? 6351-800 Why is this calculation more difficult to complete mentally? How do you need to split the number in this calculation? Repeat with all digits having a value. $\begin{aligned} & 5325-60 \\ & 6334-70 \\ & 3489-600 \\ & 6336-800 \end{aligned}$ Can you order the following calculations from difficult to easy? Why have you put them in this order? $3820-50,2892-500,1363-5,9848-3000$ Can you create a set of calculations for your partner to order from easy to hard? How have you made calculations more difficult?

Finding the difference	Using a bead string, model how finding the difference still relates to subtraction. To calculate $72-65$, slide 28 beads out of the way so that you are working with just 72 beads for both methods. Model subtracting 65 beads by counting them as you slide them to the right (which is equivalent to counting back on a number line). Show that there are 7 beads left at the end of the bead string (see image above). Talk to the children about how it took us a long time to count back all 65 beads. Then go back to starting position and quickly identify where 65 is counting from the left - you can tell the children that this time you are going to take away 65 beads, starting at the left. Notice the 7 beads that make up the rest of the original 72 . Show how this is the equivalent to counting on from 65 to 72 beads and showing that you have 7 beads as a difference between the two numbers. Repeat with 5 examples where there is a small difference. Now look at a calculation where it is more efficient to count back e.g. 72-6. Is it quicker to count on from 6 to 72 or count back 7 from 72 ? Talk to the children about which was the most efficient method. When numbers are close together, finding the difference by counting on from the smaller number to the larger number is the most efficient strategy. When the numbers are far away subtracting the smaller number from the larger number by counting back becomes the most efficient strategy. Allow children time to become fluent with this strategy, increasing to larger numbers e.g. 2007-1995. 3018-2876

First 4 Maths

	Because these numbers have a small difference and are both close to 3000 , a mental method of counting on from the smaller to the larger number is appropriate: Give children a range of calculations and ask when they would count on and when they would count back. Greater Depth - can children create their own calculations to show when to count on and count back?
Use addition and subtraction to calculate the inverse	Reinforce the use of the number facts triangle and bar model to explore the relationship between addition and subtraction. $17+24=41$ $41-17=24$ $41-24=17$ Allow children time to practise finding the four related facts. How could you use these models and images to help you to decide what operation to use in calculations like these below? What mental methods can you use to solve these calculations?

	Have children retained their written methods from Y3? Once children understand the inverse with mental calculations, this may be a good opportunity to assess their retention of written methods. $\begin{aligned} & 234+?=653 \\ & 817-?=345 \\ & ?-431=256 \end{aligned}$ Is a mental method efficient or do you need to use a written method? Encourage children to use the inverse operation to check calculations. Spot the mistake - use the inverse operation to check if this calculation is correct. $3455+5433=8988$
Reordering	Use practical resources to explore how reordering numbers in a calculation can help us find a solution more efficiently. e.g. Use Numicon to support children in seeing number bonds within a set of numbers like $17+28+13$ Ask children to think about other calculations where a different order would make the calculation easier. Include larger numbers. E.g. $\begin{aligned} & 2400+850+600+50= \\ & 146+58-26= \end{aligned}$ Use money, Dienes and place value counters to help support the concept of using number bonds to make a complete ten, hundred, thousand or whole number.

	Repeat for subtraction of other near multiples of 10. Ask children to consider if they would see a pattern when adding 8, 18, etc... Explore patterns to help children apply the concept to other numbers e.g. adding/subtraction of 90,900, 9000... $\begin{aligned} & 7+9=16 \\ & 70+90=160 \\ & 700+900=1600 \end{aligned}$ Can they suggest whether $70000+9000$ would be in the sequence? Why not? Adam wants to use partitioning to do these subtractions: $\begin{aligned} & 83-28 \\ & 142-98 \\ & 256-129 \end{aligned}$ Has he chosen the best method? Can you explain to Adam why you think you may have a better method?
Estimation	Recap rounding numbers. If we were adding $413+589$, how would we use rounding to estimate an answer to this calculation? How can this help us? Why should we bother estimating? Making an estimate Which of these calculations have an answer that is between 500 and 600? $\begin{aligned} & 1733-1187 \\ & 3345-2776 \\ & 9314-8756 \end{aligned}$ Estimation can now be consolidated as we teach children the written methods.
Using a standard written method to add 4-digit numbers	In line with your school calculation policy, move from using concrete resources such as Dienes or Place Value counters to expanded methods then to the compact method as appropriate. Start with no exchange, then exchange in ones column, tens column, hundreds column. Finally calculations where more than one exchange is needed - ones and tens, ones and hundreds, then ones, tens and hundreds. To ensure deep conceptual understanding of why they are exchanging, children may need to move back through the stages in the CPA approach as the calculations get more complex.

	Encourage children to complete missing digit calculations. First with no regrouping $\begin{array}{r} 5 ? 4 ? \\ +? 5 ? 5 \\ 8878 \end{array}$ Then with regrouping $\begin{array}{r} 3 ? 4 ? \\ +? 5 ? 7 \\ 8319 \end{array}$ Play with a partner. Decide on a 4-digit target number. Take turns to throw a 0-9 dice to generate a digit. Decide where to place it. Try to make the total as close to your target as possible. Encourage children to estimate the possible total as they are playing. \square \square \square \square $+$ \square \square \square \square
Using a standard written method to subtract 4digit	As with addition, use Dienes or place value counters on a place value grid to help children understand the concept of exchange. Unlike addition, only represent the larger number with materials. Ask children why we don't represent both numbers (we are taking the smaller number away from the larger).
	Here, $234-88$ is represented. 1 ten is exchanged for 10 ones to enable us to take 8 ones away from the 4 ones we have. 8 are removed to leave 6 ones. In order to take 8 tens away from the 2 tens we have left, another exchange of 1 hundred for 10 tens is done. Again 8 tens are now taken to leave 4 tens. 1 hundred remains.

Adjusting
numbers to
manipulate
standard
written
method

NB - this strategy can be difficult for children to retain if they do not gain a clear understanding of the difference between adjusting when adding and when you are subtracting. If children are confident with the previous mental and written methods, allow them to explore this method while other children in the class consolidate their understanding of the previous methods. This method can then be revisited in money and measure for those that are able to retain in.

Encourage the children to consider when we can play with (adjust) a number to make the calculation more efficient.

Addition

2999	+1	3000
+6789	-1	+6788

With addition if you +1 to one number it needs to be taken away from the other number to give an equivalent calculation

Can children use smaller numbers and resources to explain why this works e.g. $9+6$ on two tens frames, then move one counter from the 6 and add it to the 9 to show $10+5$ is the same amount of counters but adjusted. Practise with larger numbers and numbers where the adjusting is by more than 1? E.g. $5995+2396$ add and subtract 5 to make an equivalent calculation of $6000+2391$

Subtraction

When subtracting the difference between the two numbers needs to stay the same so we subtract one from each side.

We need to adjust but maintain the difference

These numbers have the same difference but $6999-5455$ is an easier calculation than 7000-5456

Start with small numbers e.g. 20-6, if we take one away from our starting number before we calculate we need to take away one less so the number we are taking away needs to be one less
e.g. $20-6=19-5$
$5000-2749$ is equal to $4999-2748$, why is this easier to calculate?

