Planning Overview
 Year 5 Place Value

Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit
Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000
Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero
Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10,000 and 100,000
Solve number problems and practical problems that involve all of the above
Read Roman numerals to $1,000(\mathrm{~m})$ and recognise years written in roman numerals.
$5 N P V-1$ Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1. Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01. Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.O1.
5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning.
5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.

	Teaching and Learning									
Read and write numbers to a million	Children have worked with numbers up to 10,000 in Year 4.									
	Thousands			Ones			Ask children to record the following numbers in the place value chart. $\begin{aligned} & 4,635 \\ & 27,492 \\ & 234,629 \end{aligned}$ When do we say the word thousand in each of these numbers?			
	Look at the pattern of 3 digits in each of the two sections of the place value chart, we say thousand when we have finished saying all of the digits in the orange. Show the children a place value chart and discuss how to read the numbers up to one million. Discuss the value of digits in different columns. Look at a number and consider what individual digits are worth. Make with Place Value counters as appropriate. Add counters to columns and discuss what the calculation is e.g. $345,670+2$ counters to the 1,000 column 345,670 + 2,000									

What happens when we get 9 counters in a column? Complete sequences/tables counting forwards and backwards in powers of 10. Reinforce through starters/mental work

Give the children a number and ask them what 30,000 more would be. How do you know? What would 700 less be?

Sometimes/Always/Never or True or False

When I add counters to one column on a place value chart, it is only that column that changes.

What happens when we get to 999,999 ?

Introduce the millions column and practise saying numbers with 1 in the million column.

Mastery

```
Explore 1 million:
- Write 1 million in digits.
- Write down the number that is 1 more than 1 million.
- Write down the number that is 10 more than 1 million.
- Write down the number that is 100 more than 1 million.
```

Play the Place Value game.
2 children play competitively. Each child has a set of digit cards from O9 in a pile face down. Child A chooses a card at random and decides where on their template to place this number. Child B will do the same thing.

Child A

Child B

First 4 Maths

Each child will repeat this 5 times to ultimately create a 5 -digit number. Children will be aiming for their number to meet a certain criteria e.g. Largest number, an even number in both hundreds and thousands etc. What numbers can the children make, and can they make their own criteria. What's the same and what's different about the numbers?

Mastery with Greater Depth

Using all of the digits from 0 to 9 , write down a 10-digit number.
What is the largest number you can write?
What is the smallest number you can write?
Write down the number that is one less than the largest number.
Write down the number that is one more than the smallest number.

Captain Conjecture says, 'Using the digits 0 to 9 we can write any number, no matter how large or small.'

Do you agree?
Explain your reasoning.

How big is a million? - First4Maths Digging Deeper activity.

SETTING THE SCENE

Show children a range of images to represent a million. Consider the size of 1000000 .

EXPLORE

Read the book - How big is a million? by Anna Milbourne. As you read the book tell the children that you have counted the 100 penguins but not the 1000 snowflakes. When you get to the poster representing 1000000 tell the children that you intend to count all of the 1000000 stars and begin to count the first 10 stars.

TAKING IT FURTHER

Encourage the children to consider how long a set of 10 numbers take to say and make predictions based on the timings e.g. 1-10 may take 3 seconds - can you predict how long it will take to say $1-100$. How close was your prediction? Will it take more or less time to say 771 - 780 than it took to say $1-10$?

First 4 Maths

Partitioning in standard and nonstandard forms	Look at how numbers can be partitioned into different ways. Use the part/part/whole model to record children's findings. What's the same, What's different? Show two different charts with the same value but arranged differently. Look at the link with multiplication and division alongside dienes if needed 1 hundred is 10 tens, 100 ones 1 thousand is 10 hundreds, 100 tens, 1,000 ones How would you work out what 35 thousands are in tens? \square Can you partition 48,430 in different ways Show children how to do this systematically with folded paper. Start by writing each digit followed by its place value column along the top of a piece of paper Starting at the lowest value column pick up that whole column and fold it over the next place value column. You are aiming to hide the next column name but be able to see the digit. Repeat this for each place value column. This will allow the children to see the number being represented in a range of ways.

Compare and order numbers to 1,000,000	Compare 2 numbers Show two numbers with greater than and less than signs. How can you explain which is bigger? Compare 15,463 with the following numbers $5,23,463,4,622,10,455,15,572,15,472,15,468$. When does it get more difficult to decide which is bigger? Why? 'To compare 5 to 15,463 I notice that on is a single digit number and one is a 5 -digit number. One only has a digit in the ones column and one digits in each column up to the ten thousands column.' 'To compare 23 to 15,463 I notice that ...' 'To compare 10,455 to 15,463 I notice that each number has a 1 in the ten thousands column. I can't decide which is the bigger number based on this so I need to look at the value of the next column to the right. One number has 0 thousands and one has 5 thousands. 5 thousands is bigger than 0 thousands so 15,463 is bigger than 10,455' 'To compare 15,472 to 15,463 I notice that'

Children also need to be able to position numbers on a number line that has $10,5,4$ and 2 equal parts.

4NPV-4 Teaching guidance

By the end of year 4, pupils must be able to divide 1,000 into $2,4,5$ or 10 equal parts.
This is important because these are the intervals commonly found on measuring instruments and graph scales.

Figure 10: bar models showing 1,000 partitioned into 2, 4, 5 and 10 equal parts

5NPV-4 Teaching guidance

By the end of year 5, pupils must be able to divide 1 into $2,4,5$ or 10 equal parts. This is important because these are the intervals commonly found on measuring instruments and graph scales.

Figure 17: bar models showing 1 partitioned into 2,4,5 and 10 equal parts

Their work on blank number lines will help them with the lines with 2 and 4 sections.

For number lines with 10 equal parts children need to look at the start and the end number, work out what the total size of the number line is and divide that by 10 .

Once you think you know what a number lines intervals are, continue the count to make sure the next numbered interval is correct.

For number lines that have 5 equal parts children could look at the start and end points of the number line, work out the total size of the number line and divide that by 5 . If children are more confident dividing by 10 then they could mark on each interval in between the 5 equal parts and create a number line with 10 equal parts.

	Place a range of numbers on the same number line in order to order and compare them. Children use this as a way to help them to solve reasoning questions around ordering and comparing questions. Place the same number on number lines with different start and end points. Place 36467 on these number lines - explain your steps. Reason about the start and end points of a number line when given one of the positioned numbers 36,000 is placed $1 / 4$ of the way along this number line. What could the start and end points be? Find 4 possibilities.
Round any number up to 1000000 to the nearest 10, 100, 1000, 10 000 and 100000	Look at 6 digit numbers and explore the rules that we follow when rounding. To round to the nearest 10 we use the ones as the determiner To round to the nearest 100 we use the tens as the determiner To round to the nearest 1,000 we use the 100 as the determiner Model on a number line. What is the 10 before and after the number? These are the 2 possible answers. What is the middle number? Position the number that needs rounding. Which is the closest multiple of 10 ? Where does the number we are rounding go? Remind $1,2,3,4$ round down. 5, 6, 7, 8, 9 up.

Interpret negative numbers Count forwards and backwards with positive and negative numbers	Discuss when we see negative numbers in a real-life context. Language focus from NCETM
	Number pair Positive number further from zero Negative number further from zero Both numbers same distance from zero -6 12 -12 6 -6 6 10 -1 10 -10 10 -100 NCETM PD Materials Read temperatures on a thermometer. Position the numbers on a number line. Using temperature discuss the difference between the temperature and $0^{\circ} \mathrm{C}$ e.g. if it $-5^{\circ} \mathrm{C}$ how much would the temperature need to rise to get to $0^{\circ} \mathrm{C}$. Show this on a number line. If it was $10^{\circ} \mathrm{C}$ how much would the temperature need to fall to get to $0^{\circ} \mathrm{C}$. Show this on a number line. What is the difference between $-5^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$? Show this on a number line.

Read Roman numerals to 1,000 (m) and recognise years written in roman numerals.	Sometimes/Always/Never A multiple of 10 is made of less Roman Numerals than digits e.g. $10=\mathrm{X}$, $100=C, 1,000=M$ Find opportunities to consolidate Roman Numerals e.g. writing the date, links to topic. This Roman Numerals activity gives children the chance to focus on the different letters used by the Roman's to create numbers. The activity consists of a series of word labels. Each word contains letters that make specific numbers. For example, in the word 'drive', the letters DIV would make the number 504: The challenge is [...] https://mathsticks.com/my/?s=roman+numerals
Problem solving	Problem solving can be built into the unit now to look at comparing, ordering, reading scales (application of number line work) and rounding or this problem solving can be used within measures unit to consolidate these areas of mathematics later on in the year. Measures questions are integrated into the ready to progress NPV objectives and the number spine in the NCETM PD documents.

