Planning Overview

Year 5 Decimals and Percentages

Read and write decimal numbers as fractions
Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
Round decimals with two decimal places to the nearest whole number and to one decimal place
Read, write, order and compare numbers with up to three decimal places
Solve problems involving number up to three decimal places
Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal
Solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}$ and $\frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25 .

5F-3 Recall decimal fraction equivalents for $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{10}$ and for multiples of these proper fractions.
$5 \mathrm{NPV}-1$ Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1. Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of O.O1.
5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.
5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning.
5NPV-4 Divide 1 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in units of 1 with $2,4,5$ and 10 equal parts

	Teaching and Learning
Understand tenths and hundredths and the relationship between tenths and hundredths	Introduce place value of decimals using concrete resources.
	Use a bead string to reinforce the relationship with decimal numbers: If the bead string represents one whole, what is each coloured section of 10 beads? (One tenth) What would that look like as a fraction? $\left(\frac{1}{10}\right)$
What would this look like as a decimal? (O.1) We have no wholes and one in the tenth column.	

	Ready to Progress Fill in the missing numbers. \square tenths $=3.9$ \square hundredths $=0.22$ \square hundredths $=8$ Circle all of the numbers that are equal to a whole number of tenths.
If children hundredt plan intro Teaching objective on a numb places. *The Read hundredth before mo	e fully secure with the conceptual understanding of tenths and you may wish to introduce them to thousandths at this point. This ces thousandths later in the unit of work. usandths at this stage would allow you to tackle the following round adding and subtracting, ordering and comparing, positioning line and multiplying and dividing by 10,100 and 1000 to 3 decimal to Progress materials prioritise children's understanding of in Year 5 - ensure that the children are fully secure with hundredths ing on to thousandths.
Partitioning and recombining decimal numbers	Build decimal numbers using place value counters. Children to use this to help them to partition their decimal using standard then nonstandard partitioning. $\begin{aligned} & 3.56=3 \text { and } 5 \text { tenths and } 6 \text { hundredths } \\ & 3.56=2 \text { and } 1.5 \text { and } 0.06 \\ & 3.56=3 \text { and } 0.4 \text { and } 1.6 \\ & 3.56=2.9 \text { and } 0.6 \text { and } 0.06 \end{aligned}$ Can children recombine numbers and understand the place holders when a value does not appear in a column. Ready to Progress Complete the calculations. $\begin{aligned} & 4+0.07+0.2=\square \\ & 0.4+0.02+70=\square \\ & 20+0.07+4=\square \\ & 0.4+20+700=\square \end{aligned}$

	Extend to addition and subtraction by using Place Value where exchange may be necessary e.g. examples below from Ready to Progress. $\begin{array}{lll} 3.87-0.8=\square & 25.14-0.04=\square & 19.7-9=\square \\ 99.99-90=\square & 84.51=50+\square & 0.3+5.61=\square \\ 95.75-0.5=\square & 6.14=5+\square+0.04 & 2+1.43+0.05=\square \end{array}$
Compare decimals	Compare two decimal numbers using $\langle>$ and $=$ Build decimals using place value counters if necessary. Begin with decimal numbers with the same number of place value columns Compare 4.5 and 4.8 Compare 6.6 and 6.5 Compare 3.45 and 3.48 Model the language that children will be required to use 'To compare 4.5 and 4.8 I can see that both numbers have 4 in the ones column but one number has 5 tenths and one has 8 tenths. 8 tenths is bigger than 5 tenths' Extend to numbers that may appear larger e.g. 0.56 and 0.8 , do children understand that 0.8 is larger due to the value of the tenths column.
Position decimal numbers on a number line	Use a bead string and pegs to position numbers with 2 dp on a number line from $0-1$, ask the children to identify where $0.1,0.5$ and 0.9 would be. Ask them to place a peg on 0.54 , and 0.87 and explain reasoning about where they would be.

Move children from a concrete bead string to a number line with 10 increments.

Model how to label the start of the number line with a whole number and the end of the number line with a whole number.

What will each of the increments be?

Where would 1.25 go on this number line? 1.62? 1.97?
Relate this to number lines between other whole numbers with 10 increments.

Ready to progress guidance

Look at positioning decimals on number lines with varying increments and scales - encourage children to continue the count once they have placed their numbers as a way of checking their answer.

Relate this number line work to the work that they did in place value. How many increments has the line been split into? Can we use the strategy of a mid point? Of quarter point? If the number line is in 10 increments can we use our understanding of a number line in 10 increments to help us?

Ready to progress guidance
5. Complete the labelling of these scales.

	NRICH - Round the Dice Decimals 2 Round the Dice Decimals 2 Age 7 to 11 Challenge Level ${ }^{\star}$ There are three dice, each of them with faces labelled from 1 to 6 . When the dice are rolled they can be combined in six different ways to make a number less than 10 with two decimal places. For example, if I roll a 2, a 3 and a 6, I can combine them to make 2.36, 2.63, 3.26, $3.62,6.23$ or 6.32 . Now round each of these numbers to the nearest whole number: 2.36 rounds to $2,2.63$ rounds to $3,3.26$ rounds to $3,3.62$ rounds to $4,6.23$ rounds to 6 and 6.32 rounds to 6 . Repeat for other rolls of the dice. Can each of the six numbers round to the same whole number? Can each of the six numbers round to a different whole number? There are some interactive dice here that you can use for this problem.
Add and subtract decimals	Recap on the mental methods that were used in the Addition and Subtraction unit of work. How can these be applied to decimals? e.g. bridging$0.7+0.5(0.7+0.3+0.2=1.2)$0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.10.1 0.1 How would children tackle $2.7+1.5=$ 'I would do $2.7+1=3.7$ first and then I would do $3.7+0.5=4.2$ ' Finding the difference 5.6-4.9 (a blank number line may support children to bridge through 5) Compensating $3.4+0.9$ (a blank number line may support children to see which way they need to compensate) Reordering $4.3+2.5+0.7=$ (reminding children to look for bonds or known facts)

Recap how to use a bar model. The parts can be added together to make the whole. If we know the whole and one part then we are going to need to subtract to work out the other part.

Mastery

Write four number facts that this bar diagram shows.

Encourage children to compete missing box calculations that involve a selection of strategies.
e.g. 3.4 + ? = 5

5	
3.4	$?$

Mastery with Greater Depth

Use this number sentence to write down three more pairs of decimal numbers that sum to 3 :
$1 \cdot 6+1 \cdot 4=3$

Application to word problems
4. The bar chart below shows long-jump distances for 6 children.

a. How far did the winning child jump?
b. What was the difference between the two longest jumps?

	What would the division pattern look like? $2 \div 10=0.2 \ldots$ Look at the chart below (taken from NCETM Professional Development Materials) and discuss relationships. ,__ is ten times bigger than \qquad \qquad is ten times smaller than/one tenth the size of is one hundred times bigger than \qquad \qquad .' \qquad is one hundred times smaller than/one hundredth the size of \qquad . Use this to help solve missing box problems $\text { e.g. } 0.3 \div \text { ? }=0.03$
Multiply and divide numbers mentally drawing upon known facts	This objective may have been covered in the multiplication and division unit of work - if not revisit here Remind children of the multiplication and division triangle and the related facts. Extend to decimals e.g. what if 2.4 was at the top of the triangle what could be on the bottom? Discuss how we have scaled 24 to 2.4 by making it 10 times smaller. How can we use our understanding of scaling from our multiplication and division unit to solve this question? $24 \div 6=4 \text { becomes } 2.4 \div 0.6=4$ Solve missing number questions $? \times 6=2.4$ Use the known fact ? X $6=24$ to support. $8 \times ?=2.4$ Use the known fact $8 \times ?=24$ to support.

Recognise and use thousandth s and relate them to tenths, hundredths and decimal equivalents	Reintroduce Dienes and ask children to recall how the pieces relate to each other. Emphasise the relationship of 10 : 10 ones in a ten, 10 tens in a hundred, 10 hundreds in a thousand. Ask children to imagine the "thousand" block is now an enlarged "one" If we split this into 10 pieces, it is now part of a whole called a tenth. If we split the tenth into 10 pieces it is now a hundredth and if we split the hundredth, it is now a thousandth. Introduce the decimal point as a separator of whole numbers and fractional parts. How many thousands are in one whole? How many thousands are in one hundredth? How thousands are in one tenth? Ask children to identify numbers represented by combinations of equipment and use place holders where necessary.
	Play Cover the board to reinforce parts to a decimal. Children roll a dice 4 times to generate a decimal to 3 decimal places. Children can use their digits to create a number that they like. Children cover their number using counters on the board below. Their partner does the same thing but with a different colour of counter. Children are aiming to have 3 of their colour counters in a row. children will need to start thinking carefully about what decimal number they create from their dice roll in order to be strategic.

First 4
Maths

	If children have only worked with 2dp up to now then repeat activities from working with Decimals to 2dp e.g. comparing and ordering a range of decimals, multiplying and dividing by 10,100 and 1000 but this time including thousandths. Can children create related multiplication and division facts including thousandths.
Solve problems involving number up to three decimal places link to measure	Application to measures can take place as part of this unit and then be further consolidated during the Measures unit of work. Images from NCETM PD Materials
	More than one tenth - measures:
	The litre jug is divided into ten equal parts and there is water up to the seventh mark; this is seven tenths of a litre.' Consider ways to apply the skills to problem solving. The table shows how far some children jumped in a long-iump competition.'
	Name Distance jumped (m)
	Jamal 3.04
	[Reyna 3.4
	Faisal 2.85
	llaria 3.19
	Charlie 3.09
	Kagendo 2.9
	- 'Who came third in the competition?' - 'How much further did the winner jump compared to the child who came second?' - What was difference between the longest and shortest jumps?' - 'How much further did Ilaria jump than Faisal?'

	Display the Fraction/Decimal equivalents for when we move onto Percentages. Solve comparison problems similar to those found in the SATs e.g. $\begin{aligned} & \text { Tick the two numbers that are equivalent to } \frac{1}{4} \\ & 0.25 \\ & 0.75 \\ & \frac{25}{100} \\ & 0.5 \\ & \frac{2}{5} \end{aligned}$
Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal	Consider how percentages are out of 100 so the whole is 100 . Link to number line being 100 parts. NCETM PD Materials Link to completing parts of a 100 square. How can we identify the percentage? What Percentage of the square is yellow? What percentage is white? What do these totals add up to and why? Maths Bot

	Mastery Express the yellow section of the grid in hundredths, tenths, as a decimal and as a percentage of the whole grid. Do the same for the red section. Greater Depth Suggest another way to colour the grid to show clearly each fraction that is shaded. What fraction of the grid is shaded in total? How many different ways can you express the fraction of the grid that is shaded?
Finding percentages of amounts	Are children able to systematically find percentages of amounts? Show children the Percentage Chains image. Remind children that 50% is a half and 25% is a quarter. If we knew that 100% of a number was 40 then what would 50% of that number be? We could half 40 because half is the same as 50 . We could then say that 50% of 40 is 20 .

