First 4 Maths

Planning Overview

Year 5 Addition and Subtraction

Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
Add and subtract numbers mentally with increasingly large numbers
Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth

	Teaching and Learning
Introduction	Children will have covered a range of strategies in the Year 4 addition and subtraction unit and then applied these strategies within the decimals and measures units of work. Assess children's retention of these methods using the activity below. Which is the most efficient way to solve each of the calculations below?
	Recall Mental Strategies Mental Strategies with jottings Written Methods
	$\begin{aligned} & 0.7+0.3= \\ & 6,072-501= \\ & £ 10-£ 8.89= \\ & 5,539-752= \\ & 606+1,042= \\ & 4,956+1,432= \\ & 340 m+239 m+260 \mathrm{~m}= \\ & 1.2 \mathrm{~m}-0.4 \mathrm{~m}= \end{aligned}$ Can children explain why they have positioned each calculation in each section? Can the children create an extra addition and subtraction calculation for each section of the grid?

	Ensure children also write the subtraction facts linked to a calculation. Use models and images if the children are struggling to see the relationship between the known and related facts. Consider other known facts such as scaling doubles and looking for near doubles. $\begin{aligned} & \text { - Doubling } \\ & 16,000+16,000=\square \\ & 180,000+180,000=\square \end{aligned}$ Children to take 1 calculation and see how many related calculations they can establish from that known calculation. Ensure that children can apply what they have learnt to missing box questions e.g. 60,000 - ? = 54,000									
Add and subtract numbers mentally with increasingly large numbers Using place value to calculate	Following on from the addition and subtraction in the Place Value unit encourage the children to look at the parts of the number and consider how can this help calculation. $400,000+80,000+5,000=$ Highlight the areas on the chart below and add together.									
	1,000,000	2,00,000	3,000,000	4,000,000	5.00,000	6,00,000	7,00,000	8,000,000	9,000,000	Children to use and apply their place value understanding to solve a range of calculations.
	100,00 10.000	200,000 20,000	300,00 30.000	400,000 40,000	500,000 50,000	60,000 60,000	700,000 70,000	800,000 80,000	900,000	
	1.000	2000	3.000	4.000	5.000	6.000	7.000	8.000	9,000	
	100	200	300	400	500	600	700	800	900	
			3	40	50	60	70	${ }^{80}$		

Add and subtract numbers mentally with increasingly large numbers Using partitioning to calculate	Extend Place Value Addition and Subtraction to partitioning. Look at using partitioning to solve calculations with larger numbers e.g. $234,500+242,200=$ Children reason what types of calculations partitioning would be an efficient strategy for - ones that don't require any exchange or very few exchanges. Children sort calculations into calculations where this would be an efficient strategy and calculations where a written strategy or another mental strategy would be more efficient.
Add and subtract numbers mentally with increasingly large numbers Bridging	The tens frame can be used as a model to support bridging using number bonds if children have not secured this understanding in previous year groups e.g. each counter represents 100 to show 1.800 $+500$ or $2,300-500=2,300-300-200=1,800$ Relate to scaled facts $\begin{aligned} 15,000-7,000 & =15,000-5,000-2,000 \\ & =\square \end{aligned}$ $284,000+37,000=284,000+16,000+21,000 \quad$ Bridging $=$ \square $7,000+5,000=$ \square $305,000-12,000=305,000-5,000-7,000$ $37,000+45,000=$ \square $=$ \square $87,000+65,000=$ \square NCETM PD materials How have you partitioned each of the numbers to support with bridging? E.g. 7,000 $+5,000=7,000+3,000+2,000$ Model how bridging can also be used as an efficient way to calculate the difference. Children will have covered this in Y4 addition and subtraction and applied to decimals, money and measure (assess and track back if needed.)

	Can children apply to larger numbers and missing box problems e.g. $51,000-45,000$
	92,000 - ? = 85,000 (A bar model can help children to understand how to tackle missing box questions. In this question we know the big number so we know the value of the whole bar. We only know one of the small numbers so the ? is the other small number. This is called the difference model)

But when subtracting we take the same amount from both sides to maintain the difference between the two numbers. Here by adjusting both sides to make them both 1 smaller we maintain the difference however we have created an easier calculation.

We need to adjust but maintain the

How would children adjust or compensate to answer these calculations?

Consider how to compensate/adjust to balance these calculations

$57+24=\square+22$

$57+\square=37+44$
Calculations taken from NCETM PD Materials
Children apply what they know about adjusting and compensating calculations to answer this question - they need to explain their reasoning rather than solve the calculations.

	\quad Mastery with Greater Depth True or False? $=3999-2999=4000-3000$ $=399-2999=3000-2000$ $=2741-2633=2742-1264$ $=2741+1263=2742+1264$ $=2741-1263=2731-1253$ $=2741-1263=2742-1252$ Explain your reasoning. Using this number statement, $5222-3111=5223-3112$ write three more pairs of equivalent calculations. Pupils should not calculate the answer to these questions but should look at the structure and relationships between the numbers.
Add and subtract numbers mentally with increasingly large numbers fact families and inverse operations	Inverses Use the number facts triangle and bar model to explore the relationship between addition and subtraction. How could you use these models and images to help you to decide what operation to use in calculations like these: If using a bar model use the strategy of children identifying what they know about each missing box calculation - do we know the parts or the whole? $234+?=653$
	653
	234 ?
	$817-?=345$ (we know the whole and one part so we are subtracting)
	817
	345 ?
	$?-431=256$ (we don't know the whole so we are adding the two parts)
	431 256
	?
	Children use a bar model to help them to check the answer to some calculations that they have been given. Can they find any calculations that they know are incorrect before checking them?

	Discuss with the children why it might be good to estimate an answer before you tackle a calculation. Recap on rounding to support estimation. Provide the children with a calculation e.g. $395+412$. What would be a good estimation for the answer? How could we use rounding to help us? What would the best numbers be to round to? Model rounding to the nearest 100 . $400+400=800$. What is the actual answer? Is your estimation near? Can it help you check you have the right answer? What about if we round this number to the nearest 10 ? Will the estimation be more precise? Is the calculation as easy to do mentally? Which would be the best estimation? Children to use rounding to give approximate answers to calculations - Graph taken from NCETM PD Materials Answer questions on data such as the graph above but to round each events ticket numbers to a suitable number before calculating. E.g. approximately how many more people watched the athletics than the boxing? Children to use rounding to check the answers to calculations. Estimation can now be consolidated as the children recap written strategies with larger numbers. Ensure that the children estimate the answer to each question before solving them. Adding and subtracting two 4-digit numbers is covered in Y4 Extend to adding and subtracting two 5-digit and two 6-digit numbers. Complete questions that have no bridging and then extend to cross boundaries. When children are secure, give questions where the number of digits are different in each number. Ensure children line the digits up correctly.				

This table shows the number of people living in various towns in England.

Town	Population
Bedford	82,448
Carlton	48,493
Dover	34,087
Formby	24,478
Telford	166,640

What is the total of the numbers of people living in Formby and in Telford?

1 mark
What is the difference between the numbers of people living in Bedford and in Dover?

1 mark
Substantial problem solving - Maths Challenges for Able Pupils

First 4 Maths

	Make 200 $\begin{array}{llllllll}1 & 2 & 3 & 5 & 7 & 8\end{array}$ Choose four of these digits. Each one must be different. Put one digit in each box. This makes two 2 -digit numbers reading across and two 2 -digit numbers reading down. Add up all four of the numbers. In this example the total is 100. $12+47+14+27=100$ How many different ways of making 200 can you find?	Questions and Activities to Develop Reasoning Agree or Disagree? To make 200, the digit in the top left box cannot be a 9 . Do you agree or disagree? Possible Answers What are the possible answers you can make using only prime digits? Would You Rather? Would you rather have the highest total using only odd digits or the highest total using only even digits? Silly Answers What would be a silly answer for the number in the top left t box if you were trying to make 100? What about 300?

