Planning Overview

Year 6 Multiplication and Division

Perform mental calculations, including with mixed operations and large numbers Identify common factors, common multiples and prime numbers
Use their knowledge of the order of operations to carry out calculations involving the four operations
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context Solve problems involving addition, subtraction, multiplication and division Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number)
6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.

	Teaching and Learning
Introduction	'What is multiplication?' How do children answer this question? Are they able to recall all elements of multiplication that they have covered in previous year groups?
Add to the working wall and let children know that they will be linking together a range of elements of multiplication and applying them to worded and more substantial problems during this unit of work. Include appropriately pitched SATs questions throughout to develop children's confidence.	
Common multiples and common factors	Revisit factors and multiples with the children and ask them to share examples of both with their partner. Consolidate their understanding by playing the factors and multiples game. Encourage children to discuss how knowledge of common factors and common multiples may help them to win the game.

https://nrich.maths.org/factorsandmultiples

Factors and Multiples Game

Age 7 to 16

Challenge Level *

This is a game for two players.
The first player chooses a positive even number that is less than 50 , and crosses it out on the grid.

The second player chooses a number to cross out. The number must be a factor or multiple of the first number.

Players continue to take it in turns to cross out numbers, at each stage choosing a number that is a factor or multiple of the number just crossed out by the other player.
The first person who is unable to cross out a number loses.
Play a few times to get a feel for the game.
Do you have any winning strategies?
Here is an interactive version of the game in which you drag the numbers from the left hand grid and drop them on the right hand grid. Alternatively, click on a number in the left hand grid and it will transport to the earliest empty location in the right hand grid. You can rearrange the numbers in the right hand grid by dragging and dropping them in position. The integer in the top right hand corner grows with the number of factors/multiples you have in a row.

Tablet version Install in home page

Multiples

Ensure children have time to practise finding common multiples to check understanding from Year 5.

Apply to a range of word problems including answering SATs style questions. e.g.
Write all the common multiples of 3 and 8 that are less than 50 .

Amir says,
'All numbers that end in a 4 are multiples of 4 '.

Is he correct?
Circle Yes or No.
Explain how you know.

Here is a sorting diagram with four sections, A, B, C and D.

	multiple of 10	not a multiple of 10
multiple of 20	A	B
not a multiple of 20	C	D

a) Write a number that could go in section C.
b) Section B can never have any numbers in it. Explain why.

364 is a multiple of 7 but not a multiple of 3.384 is a multiple of 3 but not a multiple of 7 . Find a number between 364 and 384 that is both a multiple of 7 and a multiple of 3 .

Factors

Ensure children have time to practise finding common factors to check understanding from Year 5. Apply to a range of word problems including answering SATs style questions.

Find 3 factors of 36 that are not factors of 12 .

Write three factors of 30 that are not factors of 15

Is 1 always, sometimes or never a common factor of 2 numbers?
Children to understand the phrase Highest Common Factor (HCF). HCF is found by finding all common factors of two numbers and selecting the largest one.
E.g. 8 and 12 have the common factors 1,2 and 4.4 is the Highest Common Factor.
Can children find the HCF of a selection of 2 numbers.
Tom and Ellie think of 2 numbers. These are common factors of their numbers: $1,3,5$ and 15 . What could their numbers be? Find a rule that could explain every possibility.

Here are three digit cards

Choose two cards each time to make the following two-digit numbers.
The first one is done for you.
an even number

6
an prime number

a common factor of 60 and 90 \square

a common multiple of 5 and 13

The factors of 11 sum to 12 . Write the other number whose factors sum to 12.

Children can then apply their knowledge to solve the NRICH problems below.

Abundant Numbers

Age 7 to 11
Challenge Le
Challenge Level *

To find the factors of a number, you have to find all the pairs of numbers that multiply together to give that number.
The factors of 48 are:
1 and 48
2 and 24
3 and 16
4 and 12
6 and 8
If we leave out the number we started with, 48 , and add all the other factors, we get
76 :
$1+2+3+4+6+8+12+16+24=76$
So 48 is called an abundant number because it is less than the sum of its
factors (without itself). (48 is less than 76 .)
See if you can find some more abundant numbers!

	Multiplication Squares Age 7 to 11 Challenge Level * In the 2×2 multiplication square below, the boxes at the end of each row and the foot of each column give the result of multiplying the two numbers in that row or column. $\begin{array}{l\|ll} \hline 7 & 5 & 35 \\ \hline 3 & 4 & 12 \end{array}$ 2120 The 3×3 multiplication square below works in the same way. The boxes at the end of each row and the foot of each column give the result of multiplying the three numbers in that row or column. The numbers $1-9$ may be used once and once only. Can you work out the arrangement of the digits in the square so that the given products are correct?
Prime numbers	Have the children retained their ability to recall Prime Numbers to 19 from Year 5? Ask the children to apply their knowledge of prime numbers to solve the following problems. How many factors does a prime number have? 38 doesn't appear in any times tables so it must be prime. Agree or disagree? Explain. Is it sometimes, always or never true that a number ending in a 7 is a prime number? Explain. Emma thinks of two prime numbers. She adds the two numbers together. Her answer is 36 . Write all the possible pairs of prime numbers Emma could be thinking of. Is 1 a prime number? Explain. Provide children with examples of SATs style questions to apply their knowledge. Circle the prime number. 95 89 87 Explain how you know the other numbers are not prime. Chen chooses a prime number. He multiplies it by 10 and then rounds it to the nearest hundred. His answer is 400 . Write all the possible prime numbers Chen could have chosen.

Mina says, "I am thinking of 2 numbers. When I add them I get a square number. When I multiply them I get a prime number."

What are the two numbers they are thinking of?
Dexter works out 20 squared. Annie works out 20 cubed. Find the difference between Dexter's and Annie's numbers.

Encourage children to apply their knowledge of what they have learnt to the following problem from NRICH.

Factors and Multiples Puzzle

Age 11 to 14 *
To try this puzzle you will need a copy of the playing board and cards. You can 밥download a copy to print.

1. Cut out the 10 heading cards and put one in each of the 10 spaces round the playing board.

FRIME NUMBERS	TRIANGULAR NUMBERS
SQUARE NUMBERS	FACTORS OF 60
NUMBERS LESS THAN 20	MULTIPLES OF 3
NUMBERS MORE THAN 20	MULTIPLES OF 5
ODD NUMEERS	EVEN NUMBERS

2. Cut out the 25 number cards and place each one in a different square on the playing board so that the number satisfies the condition given by the heading card for that row and the condition given by the heading card for that column.

Note:
Children will see the card 'Triangular Numbers' within this activity. Decide when and how you will introduce triangular numbers to your children.

Maths

Mental
methods for
multiplication

Children need to be familiar with a range of mental strategies and be able to recognise when to use each one according to the type rather than size of the numbers involved. A range of numbers of different sizes should be used to avoid children automatically using a written method for larger or decimal numbers when a mental method may be more appropriate.

Give the children the following set of calculations.

$12 \times 11=$	$3 \times 6 \times 5=$
$146 \times 33=$	$19 \times 8=$
$3,745 \div 5=$	$60 \times 50=$
$87 \times 7=$	$336 \div 6=$
$21 \times 4=$	$16 \times 1,000=$
$16 \times 4=$	$40 \times 60=$
$180 \div 3=$	$3,200 \div 100=$

How would they solve each of these calculations? Choose the most appropriate strategy and show your workings:

- Known facts
- Reordering
- Partitioning
- Rounding and adjusting
- Formal written method
- Place value
- Double one side and halve the other

Ask the children to visit other children to see if they have sorted the questions in a different way. They must then try to convince them why they are correct. Encourage the children to go back and add the alternative thought to their work.

Play pointless:
Has anyone used a strategy that isn't listed?
Can they add another calculation to each list?
As a class, has anyone come up with an answer no one else has?

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}120 \div 15 \text { is the same as } 120 \div 5=24 \text { and then } 24 \div 3=8 \text { (We have } \\ \text { divided by } 5 \text { and then by } 3 \text { because } 5 \times 3=15) \\ \text { This method can then also be extended to larger numbers for both } \\ \text { multiplication and division questions. } \\ 288 \div 12 \\ \text { First think of factors of } 12(12=2 \times 2 \times 3) \\ \text { So } 288 \div 12 \text { is the same as } 288 \div 2=144, \text { then } 144 \div 2=72, \text { then } 72 \div 3 \\ =24 . \\ \text { So } 288 \div 12=24 \\ 325 \times 6 \\ \text { (First think of factors of } 6(2 \times 3) \\ \text { So } 325 \times 3=975, \text { then } 975 \times 2=1950\end{array} \\ \hline \text { Remind children why it might be good to estimate an answer before } \\ \text { multiplication } \\ \text { questions. } & \begin{array}{l}\text { Provide the children with a calculation e.g. } 3,456 \times 72= \\ \text { What would be a good estimation for the answer? How could we use } \\ \text { rounding to help us? What would the best numbers be to round to? } \\ \text { Model rounding } 39,456 \text { to the nearest } 1,000 \text { and } 72 \text { to the nearest } \\ \text { ten. } \\ 3,000 \times 70= \\ \text { What is the actual answer? Is your estimation near? Can it help you } \\ \text { check you have the right answer? } \\ \text { What about if we round } 3,456 \text { to the nearest } 100 \text { ? Will the estimation } \\ \text { be more precise? However, is the calculation easy to do mentally? } \\ \text { Therefore, which would be the best estimation? }\end{array} \\ \text { Provide children with examples of questions to estimate the answers } \\ \text { to. } \\ 2,564 \times 9= \\ 3,452 \times 31= \\ 29,450 \times 87= \\ \text { Discuss with the children how context would change estimations. } \\ \text { What would happen if we were ordering flooring for a room? Would } \\ \text { this be the best estimate? Why not? Explain to the children that } \\ \text { when we rounded, we rounded down so we would not have enough } \\ \text { carpet. What would have been a better estimate? } \\ \text { Sam has completed these calculations. How would rounding have }\end{array}\right\}$

First 4
 Maths

	Some children are asked to work out 308×19. a) Which is the best estimate to use to check their answers? Why? $300 \times 10 \quad 300 \times 20 \quad 310 \times 20 \quad 300 \times 19$ b) What is the answer? c) How far off was your estimation? Estimation can now be consolidated as the children recap written strategies with larger numbers. Ensure that the children estimate the answer to each question before solving them.
Written methods of multiplication	Recap Y5 learning. Ensure that children can confidently complete written multiplication calculations using the formal methods of short and long multiplication with a different number of digits in the numbers. e.g.
	Ensure they can multiply larger two-digit numbers by four-digit numbers before moving on. e.g.
	Choose a 4-digit target number. Roll the dice 4 times to generate 4 digits. Use them to make two 2-digit numbers. Play against a partner. Who can get the closest product to the target number?

	Allow children opportunity to apply their knowledge to worded problems that involve multiplication, highlighting the mathematical vocabulary relating to multiplication. e.g. A printer can print 95 documents in a minute. How many documents can it print in three quarters of an hour? Jamie does 56 sit ups every day. How many sit ups will he do in a year? One side of a rectangle is 36 cm and the other is 0.82 m. What is the area of the rectangle? Sample SATS question A box contains trays of melons. There are 15 melons in a tray. There are 3 trays in a box. Allow children to complete missing digit problems. A supermarket sells 40 boxes of melons.
1944	
324	
How many melons does the supermarket sell?	

	NRICH - long multiplication A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown below. Each star like this \nrightarrow stands for one digit. Apart from the zero shown the only digits which occur are $2,3,5$ and 7 . Can you use this information to complete the whole multiplication? $\begin{array}{r} * * * \\ * * * \\ * * * * \\ * * * * 0 \\ \hline * * * * * \end{array}$
Written division	Recap Y5 learning if needed. Ensure that children can confidently complete written division calculations using the formal methods of short division. Children continue to develop their use of short division and how to express remainders as whole numbers, fractions and rounded numbers. Points to consider before moving to long division. Use your school calculation policy to determine your next step for division by a 2digit number, will you look at chunking or move straight to formal long division? Are all children ready to move onto division by a 2-digit number or do they need further time to consolidate other areas of multiplication and division? Chunking Supported by their secure understanding of the mental division learning done previously, introduce children to long division by chunking. Children should be taught how to set this out clearly, including noting down multiples of the number to support this process. Start with the same divisor and change just the dividend until the children become confident with the method. They should be encouraged to take away the largest 'chunk' they can each time to limit the number of steps and therefore likely errors. Children should aim to get to the answer in a maximum of 2 steps, with a remainder if needed.

	$\begin{aligned} & 2 \begin{array}{l} 212 \\ 3757 \\ 3 \\ -2600 \\ -257 \end{array} \\ & \hline 13 \times 200) \\ & -\quad 156(13 \times 12) \end{aligned}$
	Formal methods of Long Division When the children have a clear understanding of the place value within their division calculations, they can move onto a formal method for long division. This reduces the amount of related facts that they need to use, and therefore will improve their efficiency. It may help to show the children how to complete a long division calculation with a 1-digit divisor alongside a short division with the same calculation. This will enable the children to see where the steps in the long division come from. Once they are confident with this move into long division with a 2digit divisor, again keeping with the same divisor until they are confident with the method.
	Using Short Division to divide by two-digit numbers When children are fully secure with long division for dividing by a two-digit number, they may progress to a short division method. Be aware that there are multiple parts to each step and therefore

	Using the rules below, find the 2 missing numbers to make this number sentence correct. \square x \square $=1575$ - Your numbers must be 2 digits and must not be a multiple of 10 . - Which would be quicker: using your division knowledge or multiplication knowledge? Explain why. - Can you find another solution?
BODMAS	Ask the children to look at the question below and discuss what they think the answer is. $25+7 \times 9=$ Tell the children that the answer is 88 . Ask them to try to work out how you got the answer 88 . Then ask them to explore the problem again but this time with brackets. $(25+7) \times 9 \text { and } 25+(7 \times 9)$ Do they give the same answer? Why not? Introduce the children to the concept BODMAS. B-brackets O - order (squares and cubes) D - division M - multiplication A - addition S - subtraction Explain that this tells us the order that we complete calculations in. Brackets come first before square and cube numbers. Multiplication and division come before addition and subtraction. Can the children use this knowledge to explain why the answer was 88 in the first problem and why the answers were different when brackets were added?

First 4 Maths

