Planning Overview

Year 6 Addition and Subtraction

Perform mental calculations, including with mixed operations and large numbers Use their knowledge of the order of operations to carry out calculations involving the four operations
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.

	Teaching and Learning
Recap on mental strategies for addition and subtraction	Recap on key addition strategies using the rhombus nine activity below. Ask children to sort the calculations from the easiest (at the top of the rhombus) to the hardest (at the bottom of the rhombus). They must then explain why and the strategy they used to solve it.

Mastery

Two numbers have a difference of $2 \cdot 38$. The smaller number is $3 \cdot 12$. What is the bigger number?

Two numbers have a difference of 2•3. They are both less than 10 .
What could the numbers be?

Take addition and subtraction questions from previous arithmetic papers. Can the children sort them into a Venn Diagram and discuss the strategies they would use to solve the problem? Discuss with the children examples of which calculation could be placed in each section, particularly the overlapping sections.
e.g If you can calculate one of them in your head but need to make a jotting, that would be sorted in to written calculation and mental method.

Mastery with Greater Depth

Jasmine and Kamal have been asked to work out $5748+893$ and 5748-893.
Jasmine says, ' 893 is 7 less than 900 , and 900 is 100 less than 1000 , so I can work out the addition by adding on 1000 and then taking away 100 and then taking away 7!'

What answer does Jasmine get, and is she correct?
Kamal says, ' 893 is 7 less than 900 , and 900 is 100 less than 1000 , so I can work out the subtraction by taking away 1000 and then taking away 100 and then taking away 7!'

What answer does Kamal get, and is he correct?
If you disagree with either Jasmine or Kamal, can you correct their reasoning?
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Use } \\ \text { estimation to } \\ \text { support } \\ \text { calculation }\end{array} & \begin{array}{l}\text { Discuss with the children why it might be good to estimate an answer } \\ \text { before you tackle a calculation. Recap on rounding to support } \\ \text { estimation. } \\ \text { Provide the children with a calculation e.g. } 3795+4112 . \\ \text { What would be a good estimation for the answer? How could we use } \\ \text { rounding to help us? What would the best numbers be to round to? } \\ \text { Model rounding to the nearest 1000. } \\ 4000+4000=8000 . \\ \text { What is the actual answer? Is your estimation near? } \\ \text { Can it help you check you have the right answer? } \\ \text { What about if we round this number to the nearest 100 or nearest 10? } \\ \text { Will the estimation be more precise? However, is the calculation easy } \\ \text { to do mentally? Therefore, which would be the best estimation? }\end{array} \\ & \begin{array}{ll}\text { When working with larger numbers, what degree of accuracy would be } \\ \text { best to round to? Ask children to discuss with a range of calculations. } \\ 879,456+78,523 \\ 1,234,534+5,465,758 \\ 4,654,798+31,978 \\ \text { Discuss with the children the difference that context makes. How } \\ \text { would your estimation change when discussing the population of } \\ \text { countries compared with the amount of seats required in a stadium? } \\ \text { Which would need to be rounded to a smaller degree of accuracy? } \\ \text { Why? }\end{array} \\ & \begin{array}{ll}\text { Alice has completed these calculations. How would estimation have } \\ \text { helped her to know that her answers are wrong? } \\ 89,994+7,643=82,351\end{array} \\ 856,923-697,785=159,138 \\ 9-4.035=4.026 \\ \text { Estimation can now be consolidated as the children recap written } \\ \text { strategies with larger numbers. Ensure that the children estimate the } \\ \text { answer to each question before solving them. }\end{array}\right\}$

Children should then apply their knowledge to missing digit calculations. Now introduce the context of money. A charity aims to raise $£ 200,000$ over a year. So far it has raise $£ 158,436$. How much more does it need to raise to reach its target? What would be the most efficient way to complete this calculation? Mental method - number line: Written method - column subtraction: $\begin{array}{r} 2^{1} Q^{9} Q^{9} Q^{9} \theta^{9} 0 \\ -\quad \begin{array}{lllll} 1 & 5 & 8 & 3 & 6 \\ \hline 0 & 4 & 1, & 5 & 6 \end{array} 4 \\ \hline \end{array}$ NCETM PD materials Explore the strategy below where you decrease both numbers by 1 to make the calculation easier to solve. Same difference:

	Provide children with other examples where they could use this skill. $\begin{aligned} & 300,000-56,875= \\ & 1,000,000-875,375= \\ & 90,000-35,879= \end{aligned}$ Explore all of the strategies taught by sorting the following calculations and ask them to explain why they have sorted them as they have. $\begin{aligned} & 204,567-20,000= \\ & 30,000-8,999= \\ & 86,432-4,000= \\ & 324+5,000+4,000,000= \\ & 9,000,000-653,048= \\ & 34,164-15,678= \\ & 204,535+87,456= \\ & 2,050,345-89,768= \\ & \hline \end{aligned}$
Two Step Problems	Expose the children to a variety of mixed problems. Can they see the steps in the problems? Model the use of the bar model to help highlight the steps in the problem. Integrate past SATs questions for the children to tackle. Ensure that you cover the different vocabulary for addition and subtraction that may arise. Note: Year 6 level questions will include a range of the four operations. However, you will need to ensure that children are secure with multistep addition and subtraction questions before moving on. e.g. At the start of June, there were 1,793 toy cars in the shop. During June, - 8,728 more toy cars were delivered - 9,473 toy cars were sold. How many toy cars were left in the shop at the end of June?

First 4 Maths

	A shop sells boxes of chocolates. One box costs $£ 3 \cdot 99$. A second box costs $£ 2 \cdot 60$. A third box costs $£ 6 \cdot 45$. What is the difference in price between the most and least expensive boxes? The shop also sells packets of sweets. One packet costs $£ 1 \cdot 39$. Ramesh has a $£ 10$ note and he wants to buy the chocolates costing $£ 2 \cdot 60$. How many packets of sweets can he also buy?
A shop sells magazines and comics. Last week Arthur bought a magazine and a comic. He can't remember exactly what he paid, but he thinks he paid $£ 1 \cdot 76$. Yesterday he bought a magazine and four comics. He paid $£ 4 \cdot 30$.	
Do you think he is remembering correctly when he says that he paid $£ 1 \cdot 76$ last week?	

