Planning Overview

Year 2 Multiplication and Division

Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. 2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotative division).

Recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary (TAF ARE) Recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts (TAF GD)
Solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?') (TAF GD)
Count in twos, fives and tens from O and use this to solve problems (TAF WT)
Children will have learnt to skip count in $2 s, 5$ s and 10 s in year 1 and as part of the Year 2 Place Value unit. Continue to practise this as you link it to multiplication and division and children begin to learn multiplication and division facts off by heart.

	Teaching and Learning
Understand and use the language of groups	Put sets of objects into groups and investigate unequal and equal groups. How many groups are there? How many objects are there? How many are in this group? Are the groups equal? Could we make them equal? Understand that the number of groups and the size of the groups both need to be defined when describing an image that represents equal groups. Use sets of counters with many factors (e.g. 12) and try to put them into equal groups and describe what you have created using key language structures e.g. There are 4 groups with 3 counters in each group.

Link equal groups to repeated addition	Recap the special addition situation of doubling. Why is it special? What if we extended the doubling so that we have three equal groups of the same number or four equal groups? What would that look like? Demonstrate how to use repeated addition alongside the language of groups in real life contexts e.g. There are 5 groups of 2 crayons. $2+2+2+2+2$ What does the 2 represent? How many times do we need to write 2 ? How do you know? Solve picture word problems recording the answer as a repeated addition and skip counting in 2 s 5 s or 10 s to calculate the answer. Children to explore numicon and use it to solve repeated addition calculations/write calculations to represent the numicon shown.
Link equal groups to multiplication sentences with x sign	Referring back to similar real-life contexts with pictures, now replace groups of term with multiplication symbol. 5 groups of 2 may be written 5×2 in year 2 where children link x symbol to repeated addition and language of groups (Eventually when official term 'multiplied by' is used it needs to be 2×5 where x 5 is the number of groups.) Children to record multiplication number sentences to represent a given picture or context. Understand that one side of the x symbol is the number of groups and the other side is the size of each group. Once they are secure where the pictures show all the individual objects in groups move onto recording calculations where the individual objects are not visible e.g. six 5 p coins -4 packs of 10 crayons Move onto fluency questions where a question is presented as 3×5 and they solve this by counting in 5 s 3 times. This may be supported by apparatus such as numicon 5 plates or children may draw circles with 5 in to help them visualise the problem or a bar model with one bar spit into 3 with 5 in each piece. Ask the children to represent a range of multiplication questions in a range of ways. Include multiplying by zero and one.

	Can they predict whether 100 will be in the $5 x$ tables? Can they solve word problems involving the $5 x$ table? Greater Depth - What is the answer to $19 \times 5=$ 92, 95, 97 Do you know the answer without working it out? How? GD - Ask children to generate multiplication facts from one given fact. E.g. if I know 2×5 I also know......
Recall and use multiplication facts from the $10 \times$ tables	Build times table with counters/ten pin bowling images/money etc and complete fact sheet for 10 s as for 5 s Top to bottom sheet - Mathsticks Make a path from top to bottom Multiples of $\mathbf{1 0}$ Can they solve word problems involving the 10x table? Can they use patterns to predict whether 240 will be in the $10 x$ table? Use counters to show that every 10x table fact is equivalent to double the $5 x$ table fact. Investigate the relationship between 2 and 10 in a similar way. Is there any link between the $2 x$ table and the $5 x$ table?
	Complete and compare the 5 and 10 times tables. What do you notice? $\begin{array}{ll} 5 \times 1= & 10 \times 1= \\ 5 \times 2= & 10 \times 2= \\ 5 \times 3= & 10 \times 3= \\ 5 \times 4= & 10 \times 4= \end{array}$

Recall and use facts from the $2 x 5 x$ and $10 x$ tables to reason about patterns between times table facts and to problem solve	Counting in 2 s , 5 s and 10s (recap from place value unit and year 1) Colour numbers on a 100 square Play times tables aerobics Children to raise your left hand when counting from 1-50 when a multiple of 2 is said. Children to raise your left hand when counting from 1-50 when a multiple of 2 is said and raise their right hand when a multiple of 5 is said. Children to raise your left hand when counting from 1-50 when a multiple of 2 is said and raise their right hand when a multiple of 5 is said and stand up when a multiple of 10 is said. Was there a time when you just stood up? Was there a time when you just raised your left hand? Fill in numbers on number track type questions e.g. Children to explore statements such as - When I count up in 5 s I will say 25 When I count up in 10 s I will say 55 When I count up in 2 s I will say the number 5 If I count in 5 s I will always say the same numbers that I say when I count in 10s Why are all multiples of 10 multiples of 2? Are all multiples of 5 multiples of 10 ? Multiples of 2 are always even numbers - why? What do you notice about multiples of 5 in terms of odd and even numbers? Children to explore the above statements using numicon, 100 squares, number tracks to aid in their reasoning explanations. NRICH Biscuit Decorations Problem These numbers have been adapted from the original problem to use 2,5 and 10 in line with $Y 2$. Jake decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit. Then he put a cherry on every fifth biscuit. Then he put a chocolate button on every tenth biscuit. So there was nothing on the first biscuit. How many other biscuits had no decoration? Did any biscuits get all three decorations? Extension - Greater Depth Can you explain what will be on other biscuits if we went beyond 20? Record. Predict what will be on biscuit number 93,95 etc?								

Derive Division facts using division by grouping and record using the \div sign	Make a direct link between the apparatus you used for arrays and multiplication to introduce division by grouping. If I had 10 counters and grouped them into rows of 2 how many rows would I have? What would this look like? What if we grouped them into rows of 5? Use contexts relevant to your children to give meaning to the calculations. Show children how to record these as division number sentences What groups can I see in this array?
	10 divided into rows of 5 gives me 2 rows $10 \div 5=2$ Rotate the array 10 divided into rows of 2 gives me 5 rows $10 \div 2=5$
	Provide the children with division calculations and allow them to become confident with using counters to make arrays or drawing arrays to help them solve the calculations. A common misconception here can be to not understand the need to put the biggest number first. Using numicon to investigate division by grouping can help with this. E.g. give them an 8 plate. Which pieces could we cover it with exactly? Record all the division number sentences for 8 beginning with the number 8.
Image taken from the NCETM Magazine	
Revise division by sharing from Y1 and compare to the grouping method.	Look at the image above. We are going to share these characters between 5 people. Each person will get one of each character. How many does each person receive? What is the calculation for this problem?

	Look again at the image. This time we are going to put the characters in groups of 5 so that all of the characters are in matching groups. How Many groups will we have? What is the calculation for this problem? $20 \div 5=4$ 20 characters shared into groups of 5 . There are 4 groups. Repeat with the number sentence $15 \div 5=$ Give the children a set of 15 objects. How could we solve this calculation using the objects? Can the children show the two ways of solving by sharing the objects out between 5 people and then putting the objects into groups of 5 ? Compare the answers. What does the 3 represent in each case? Are children linking division with known multiplication facts i.e. did they just know the answer was 3 ? Could they count in 5 s quickly? Arrange the objects in an array-modelling both types of language. 15 divided into groups of 5 gives us 3 in each group (row) - 15 shared between 5 (imagine each person gets a column) gives us 3 each Children to complete fluency questions involving sharing and grouping using concrete or pictorial representations.
When shown an array can record 2 repeated addition, 2 multiplication and 2 division facts	Encourage children to notice that the images being used for division match those they used for multiplication. Can they write division facts and multiplication facts for the same array? What about the repeated addition facts too? (Many children will need to build up to this gradually) Address misconceptions about the order of the numbers in the division calculation that will inevitably arise by referring back to initial input when we were sharing counters into groups. Can we share 2 counters between 10 people and give them 5 each?
why a division calculation cannot be done in any order e.g. Why is $2 \div 10$ not 5?	\square Mastery This array represents $5 \times 3=15$. Write three other multiplication or addition facts that this array shows. Write one division fact that this array shows. For children who are secure with the related facts explore facts with the $=$ in the non-standard position. $\begin{aligned} & 15=3 \times 5 \\ & 3=15 \div 5 \end{aligned}$

	Children working at Greater Depth will need to solve multi-step problems in order to gain evidence of this TAF statement - solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?') Mastery with Greater Depth Which has the most biscuits: 4 packets of biscuits with 5 in each packet, or 3 packets of biscuits with 10 in each packet? Explain your reasoning. Together Rosie and Jim have $£ 12$. Rosie has twice as much as Jim. How much does Jim have? The bar model can be helpful in solving these types of problems. $\left.\begin{array}{r} \text { Rosie } \square \square \\ \operatorname{Jim} \square \end{array}\right\} £ 12$ $12 \div 3=4$ Jim has $£ 4$ Two friends want to buy some marbles and then share them out equally between them. They could buy a bag of 13 marbles, a bag of 14 marbles or a bag of 19 marbles. What size bag should they buy so that they can share them equally? What other numbers of marbles could be shared equally? Explain your reasoning.
Consolidation and Problem Solving	Problems such as Biscuit Decorations have been covered within the unit of work however it would be useful to consolidate children's understanding by tackling a range of substantial problems at this stage in the unit. e.g. NRICH - Odd times Even NRICH - Magic Plant Maths Challenges for Able Pupils - Birds' Eggs Maths Challenges for Able Pupils - Spaceship Consider how to make these problems accessible for all children and how to challenge children further by probing their thinking and asking them to evaluate their methods once the problems have been solved.

Odd Times Even

Age 5 to 7
Challenge Level $\not \subset{ }_{c}{ }^{*}$

Choose any two numbers, such as 4 and 5 . One must be even and the other odd. Try multiplying them together. How could you show this?

Lewis used a number line:

Show

Morven used Multilink cubes:

Show

Athol used counters:

Show

What do you notice about the answer?
Look closely at one of these models.
Can you see anything in it that would work in exactly the same way if you used the same model with a different pair of even and odd numbers?

Can you use your one example to prove what will happen every time you multiply an even number and an odd number together?

See if you can explain this to someone else.
Are they convinced by your argument?

NRICH - Magic Plant

Magic Plant

Age 5 to 7
Challenge Level
On Friday at 9 am , the magic plant was only 2 centimetres tall.

Every twenty four hours, it doubled its height.

How tall was it on Monday at 9 am?

	Maths Challenges for Able Pupils
	Some Tripods and Bipods flew from planet Zeno. There were at least two of each of them. Tripods have 3 legs. Bipods have 2 legs. There were 23 legs altogether. How many Tripods were there? How many Bipods? Find two different answers.

