Planning Overview
 Year 1 Place Value beyond 20

Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number
Count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens
Given a number, identify one more and one less
Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least Read and write numbers from 1 to 20 in numerals and words.

1NPV-1 Count within 100, forwards and backwards, starting with any number
1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and =
1NF-2 Count forwards and backwards in multiples of 2, 5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.

Please note that this is the third of three Place Value units following on from Place Value within 10 and Place Value within 20.

	Teaching and Learning
Count in ones forwards and backwards to 100 and beyond	Regular practise of this skill is needed throughout the year. Count with and without visual representations - Hundred square - Gattegno chart - Number line - Numdrum Children need to recognise the patterns within the count e.g. make links between $1,2,3$ and $41,42,43$ and $10,20,30$. (These connections will not all be easily grasped by just counting but will be drawn out by the activities in the sections below.) They will need extra practise counting backwards over multiples of 10 . What happens to the ones digit when we cross a multiple of 10 ? How do we know which tens digit comes next? Could children fill in each previous number on a number line with multiples of 10 marked? You will need to assess this orally 1:1 during and at the end of the year. e.g. Can children count forwards from 80 to 110 and count backwards from 105 ?
Skip counting in multiples of 10	Use familiar representations of 10 such as fingers, bundles of straws or numicon tens to support simple skip counting in multiples of 10 forwards and backwards. Dual count alongside images by saying 1 ten, 2 tens, 3 tens as well as $10,20,30$

Count objects efficiently by making groups of 10 Understand that the position of a digit tells you the value	Count a large set of objects e.g. 42 in ones and get muddled up and have to keep starting again. Show how it is easier to organise them into groups of 10 and then if you go wrong you don't have to start right back at the beginning. Could use tens frames to organise the groups of ten. Repeat process with pictures - circling groups of ten Progress to writing it on a standard PV grid and then just as a 2-digit number asking questions like: What does the 7 represent? What does the 3 represent? Which digit do we write first? Why? How many dots are there in this diagram? How could you count them efficiently?
Show 2-digit numbers using different representations	Represent 2-digit numbers using different resources. First those where you can still see that the tens are equivalent to ten ones e.g. straws, multilink cubes, then those where the tens are pregrouped e.g. dienes. Children to read a number and build it with resources. Children to be given a set of resources and count the tens then the ones to work out which number is represented. Move onto pictorial representations of the same resources. Don't always put the tens on the left - vary the presentation. Children begin to record 2-digit numbers with drawings of dienes using a line for a ten and small circles for ones. Remind them of part-whole models. Can they represent 2-digit numbers by partitioning into tens and ones? 'Throw' a 2-digit number with your fingers to another child. They say what number it is, then choose to throw a different number to someone else.

Position 2-digit numbers on a number line	An important representation of 2-digit numbers is the number line. Children need to begin to grasp that a twenties number (i.e. it has 2 in the tens column) will always be positioned between 20 and 30 on the numberline. They should be able to identifiy the numbers below by counting forwards or backwards from the nearest multiple of ten rather than counting from O every time. Some children may be able to reason about numbers on a number line e.g. Draw an arrow that points to a number where the ones digit is greater than the tens digit. Draw an arrow that points to a number where the digits add up to ten. Draw an arrow that points to a number where the tens digit and ones digit are the same.
One more and one less	Revisit counting forwards and backwards to 100 paying special attention to the tricky boundaries. Extend to make sure they can give the number that is 1 more and 1 less for any number to 100 Children to complete missing number tracks.
	50 Count in 1s 49 50 51 Count in 10s 40 50 60
	$?$ Count in 1s Count in 10 s

(

Problem solving and consolidation	Consolidate this learning through application into money and measures. Other substantial problems could include; Mathematical challenges for more able children Monster Digging Deeper - Robot Place Value SETTING THE SCENE Explain to the children that we have a visitor to our classroom today. Show the children an image of a robot, alien, creature or vehicle which will hook the children's interest. Explain that he is unusual because he only eats groups of numbers - and then he spits out the number which is the odd one out! EXPLORE Start by showing the children sets of numbers with a clear odd one out to ensure they have grasped the concept. For example, 14, 16, 13. Encourage complete sentences and clear explanations. For example, " 13 is the odd one out because it is an odd number and the other two are even numbers". Repeat with other examples until children are confident and are giving clear reasons behind their choices. Move onto sets of numbers where there is more than one possible odd one out, for example 43, 65,30 . Children may spot that 30 has nothing in the ones column, or that 30 is even. They may identify that 43 is not a multiple of five, whilst the other two are.

