Planning Overview

Year 1 Addition and Subtraction to 20

Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
Represent and use number bonds and related subtraction facts within 20
Add and subtract one-digit and two-digit numbers to 20 , including zero Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$.

1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.
1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals (=) symbols, and relate additive expressions and equations to real-life contexts. 1NF-1 Develop fluency in addition and subtraction facts within 10

This is the second of 2 units on addition and subtraction. The first unit covered addition and subtraction within 10.

| Partitioning 10
 into 3 numbers | |
| :--- | :--- | :--- |
| Include
 examples
 where zero is
 one of the 3
 numbers | Use numicon to make a known bond to 10, then replace one of the
 plates with 2 others that are equivalent e.g. make $7+3$ then
 exchange the 7 for a 2 and a 5
 Stack them on top of a 10 to show they still make 10.
 Investigate different ways to make 10 by splitting down a known
 bond. Record them as part whole models. |

	Show images of tens frames and write the calculations they show with second number partitioned. Children to add single digit numbers where answer is >10 and record the answers showing one of the numbers split to create a pair to 10 as above. Allow children time to become confident with each stage before moving onto the next. Model the same process using a blank number line. Can children write the calculation that is shown? GD - move towards using this as a mental strategy e.g. 7+4 is equivalent to $7+3+1$ which they can calculate mentally with number bonds and place value.
Recap subtraction by reduction (taking away) and by partitioning (not structure) and extend to 20	Explore language around both types of subtraction - present a series of real-life problems involving having/not having something (not structure - can still see both parts) and spending, losing, giving away (taking away structure) and make a word bank with children. e.g. There are 13 cakes altogether and the baker has put cherries on 5 of them. How many cakes still need cherries? (i.e. do not have cherries) e.g. Jo has 12 sweets. She gives 3 to Callum. How many does she have left ${ }^{\text { }}$ Images taken from NCETM - professional development materials

Include the effects of subtracting zero	Use counting objects e.g. counters on tens frames to practically demonstrate what happens when we subtract - reinforce that the answer is always smaller than the first number unless we are subtracting zero. Move onto images of counting objects where children can cross out the number that is subtracted. Do children apply place value understanding when they subtract 13-10 or 13-3? Do they apply number bond knowledge when subtracting 10-6 or 20-
	Mastery
	Complete: $\begin{array}{ll} 10+\square=10 & 6+\square=6 \\ 20-\square=20 & 16-\square=16 \end{array}$ What do you notice?
	Do some children realise that the whole ten will remain unaffected if you are subtracting less than the ones part of the teens number? 16-5=
	Transfer thinking to a number line, showing the jumps backwards as those we subtract. What's the same, what's different about the image above and the number line?
	Can children write a problem to match a given number sentence? \square Mastery with Greater Depth
	Together Sam and Tom have 19 football stickers. Tom has 8 stickers. How many stickers does Sam have? Write a number sentence you could use to solve the problem.

Subtracting within 20 by using partitioning and bonds up to 10 to bridge	Use apparatus such as bundles of straws and single straws in a different colour to show how to subtract in 2 parts. (When you look at the straws you have taken away, the 2 colours reveal the 2 steps). Alternatively use tens frames with counters on each ten frame being a different colour. Move onto bead strings. The red and white groups of 10 help to demonstrate the amount needed to bridge back to ten and then what's left. They are also most similar to the number line representation you will move onto eventually. Alongside the practical apparatus, introduce part whole models to show how partitioning reveals the second number to subtract. Use a number line to jump back to 10 and then the rest. Again scaffold the number to be subtracted with a part whole model. Make sure children are really clear about where each part of the original calculation is shown in the representation. Where is the 14 ? Where is the 6? How do we know the answer?
Understand inverse operations and fact families	Use 2 numicon plates or towers of multilink (any apparatus where you can still count in ones) to model joining the 2 parts to show an addition. Count on (or bridge if appropriate) to solve. $10+2=12$ Now show the 2 numicon plates (or towers) together and remove one. What number sentence does that represent? $12-2=10$ Look at how the 2 operations undo each other. Revisit bead strings to show how the 2 jumps you make when bridging, have 2 equivalent jumps in the opposite direction too. $\rightarrow O \bigcirc O O O-$ $7+3+2=12$ $12-2-3=7$

Revisit tens frames to explore the idea that the same pictorial representation can represent four related number sentences and associated word problems.

Which image matches the question?
Timmy had 13 football cards and he ripped 3 of them. How many did he have left? Write a number sentence to show this.
Timmy had 10 football cards and he bought 3 new ones. How many did he have then? Write a number sentence to show this.
What do you notice?

Explore the other tens frame patterns and write all the number sentences you can see.

Consider how these inverse calculations relate to the part whole model. Record the 3 numbers in the correct circles for the whole and the 2 parts. Make sure children can say what each number represents e.g. 13 is the total number of counters, 10 is the red counters, 3 is the yellow counters. $13+10=3-$ is this correct? Why not?

Move onto using a bar model to show the relationships between three numbers. Use multilink to represent the 2 parts on the bottom row if needed.

Mastery

Can you see these number sentences in the picture below?
$3+2=5$
$2+3=5$
$5-3=2$
$5-2=3$

Now write the four number sentences for the picture below:

Consolidation and problem solving	NRich - Sort Them Out
Digging Deeper - Teacher's Top Tips - Maths Magicians - Cupcake Shop	

