Planning Overview

Year 4 Measures - length, area, perimeter, capacity and mass
(Money is covered in the Decimals plan; Time is a separate plan)
Convert between different units of measure [for example, kilometre to metre; hour to minute].
Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.
Find the area of rectilinear shapes by counting squares.
Estimate, compare and calculate different measures, including money in pounds and pence.

Consider making links to PE/Sports Day, Olympics/Commonwealth Games

	Teaching and Learning			
Recap tools and language of measure. Recap units of measure and which units are used to measure different things.	Children to sort length, time, temp Children to state different situatio Focus in on diffe pairing game like a door frame is r it is not part of Y	pparatus and perature and m which unit of m s. ent measures the one below oughly $2 m$. Child 3 curriculum.	cabulary into m ey. asure would be d for length/dis reinforce known may not be fo	ss, capacity, propriate in ance using a benchmarks e.g. miliar with km as
	15 mm	25 cm	75 cm	1 m
	1.5 m	2 m	2.5 m	4 m
	6 m	10m	20 m	100 m
	300 m	1.5 km	9000m	300 km
	Distance thrown with a shot put	Length of a football pitch	Height of a door	Circumference of o football
	Length of a fingernail	Length of a roll of wallpaper	Length of an athletics track	Height of the Eiffel Tower
	Distance from London to Manchester	Length of a shoe	Height if a shoe	Height of Mount Everest
	Length of a stride	Distance jumped on the pole vault	Height of an 11-year-old	Length of a bus
	Consider whether children need to recap practical measuring in mm, cm and m before moving onto converting between these units. Could you practise these skills in science/DT/PE?			

First 4 Maths

	Children to investigate questions involving all 3 of these conversions and combinations of these e.g. mm to m . I have measured the length of my bed to be 1500 mm , but the mattress I want to buy is 1.45 metres long. Will the mattress fit on the bed frame? Children to answer a range of word problems involving units of length and converting between mixed units within the same problem Dexter ran round a 400m running track 6 times. How far did he run in km? In total Sam and Tom together cycle a distance of 120 km . Sam cycles twice the distance that Tom cycles. How far does Sam cycle?
Convert between different units of measure [g to kg]	Children to apply their previous learning from converting km to m (including decimals) to convert grams to kilograms. This is also a great opportunity to consolidate place value understanding using practical weighing apparatus. Can children work out the scale that the apparatus is using and read the scale at various points - rounding as appropriate? Children to answer a range of word problems involving weight. These should include representing kg as a decimal. I need 1.5 kg of flour to make some bread. I have 800 g . How many more grams of flour do I need? Hannah is making cakes for her Mum's birthday. She wants to make 40. Each cake needs 500 g of flour. How many kilograms of flour does Hannah need to buy? Masteru An empty box weighs 0.5 kg . Ivy puts 10 toy bricks inside it and the box now weighs 2 kg . How much does each brick weigh?

First 4 Maths

	Once children have estimated and have discussed and justified their estimates, they can use a range of resources to accurately measure these objects (cm ruler, metre stick, litre jug demarked with ml and weighing scales). Children to find the difference between their estimates and their accurate measurements. Children to compare objects using < > or = symbols (e.g. the weight of the table > the weight of the book).
Problem solving around the concepts covered	Children to solve a variety of mixed measures word problems with varying language and presentation. Ensure children are switching between length, capacity and weight within this series of problems. NRICH - What distance What Distance? Age 7 to 11 Challenge Level ${ }^{\hbar}$ \# Here are the distances (as the crow flies) in km from London to various cities in the world: Challenge 1 If someone took you the first 1000 km how much further would you have to go for each of the twelve journeys? Rather than actually performing each calculation, could you say which you think will be the most difficult and which will be the easiest, and why? Now create some similar questions of your own.

	NRICH - Ordering journeys We could be making some car jurneys between these towns and so here is a chart These numbers show us direct routes. But now, suppose we go on journeys involving three or four cities. For example, we could go from Nodo to Oxdo but go through Cado on the way. Or, we could go from Lodo to Ledo but go through Oxdo on the way Or, we could go from Lodo to Ledo but go through Oxdo on the way. When you have some of these answer these questions: 1. What is the total distance of your journey in kilometres? 2. How many minutes long is your journey? 3. How much longer (in terms of time) is the city or other cities along the way compared with the when passing through another starting city and the final destination? Now you could try and find the longest route (in terms of distance) for visiting all five cities. (We might decide that we will only visit each city once.) What about the shortest route for visiting all five cities? How much longer does it take to travel the longest route compared with the shortest
Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.	Recap perimeter from Year 3 - children use drawings of shapes with side lengths written on to calculate perimeter by adding all the sides up. Children to calculate the perimeter of shapes by measuring sides. Do this on a small scale (cm) and large scale (m - playing field or playground). Children to use drawings of shapes such as rectangles, squares and regular polygons with some measures missing to calculate perimeter. Children to establish missing lengths first before calculating. Children to apply addition and multiplication knowledge to work efficiently. E.g. perimeter of a square with a side length of 5 cm would be $4 \times 5 \mathrm{~cm}$. For a rectangle with 4 cm and 6 cm sides, children could recognise $4+6=10$ and then double this to find total perimeter or double 4 and double 6 then recognise that $8+12=20$. Children to use drawings of more complex rectilinear shapes like the ones below. Children to establish missing lengths first before calculating the perimeter. Children to use scaled drawings where scale is given to calculate the perimeter of the shape (e.g $1 \mathrm{~cm}=3 \mathrm{~m}$)

	Problem solving around perimeter If the width of a rectangle is 3 cm less than the length and the perimeter is in between 20 cm and 30 cm , what could the dimensions of the rectangle be? Can you draw the possibilities? The rectangular tiles here are three times as long as they are wide. What is the perimeter of the centre square?
Find the area of rectilinear shapes by counting squares	Children to be taught about the concept of area as the space a shape occupies. Children to be given rectilinear shapes on squared paper and taught to count up the squares to give the area. Children to have a range of shapes to investigate. Children to be set a problem involving an area of 12 squares. What rectilinear shapes can they make? Are they working systematically? Look at perimeter and area of the same shapes. What do they notice? Can they make a shape with the same area and perimeter? How can you make the perimeter go up but the area go down? Can you draw a shape where the perimeter is twice as big as the area? Can you make the area go up and the perimeter go down? If you want to create a rectangular patio with an area of 96 slabs, how could you arrange them? And another way? And another? Write your initials on squared paper. What is the area and perimeter for each letter? Look at these 4 letters. Which is the odd one out? Why?

First 4 Maths

