Planning Overview Year 4 Fractions

Recognise and show, using diagrams, families of common equivalent fractions. Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.
Add and subtract fractions with the same denominator.

4F-1 Reason about the location of mixed numbers in the linear number system.
4F-2 Convert mixed numbers to improper fractions and vice versa.
$4 F-3$ Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.

	Recap on the language of unit and non-unit fractions from Year 3. Can you remember how to find a $1 / 2$ and $1 / 4$ of an amount?
Making a whole	Using the strips from the previous session ask the children to explore ways of making a whole. How many fifths would you need to make 1 whole? How many tenths would make a whole? Can children spot the pattern with the numerator and denominator when they are making a whole? Can they come up with a rule about this? Complete $\begin{aligned} & -=1 \\ & -<1 \end{aligned}$ Give your partner a section of a strip of a fraction wall - can they make a whole by drawing the rest of the strip? Mastery with Greater Depth Assessment
	Mastery with Greater Depth Two paper strips are ripped. Identify which original paper strip is longer. Explain your answer.

Placing fractions on a 0-1 number line introducing equivalents -comparing fractions	Take a range of fraction strips and create a number line for each strip.
	$\begin{array}{lllll}1 / 6 & 2 / 6 & 3 / 6 & 4 / 6\end{array}$
	$\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$
	Children to complete number line activities such as spot the mistake, can you complete this number line, can you position these fractions on a number line? If children are struggling to decide what the increments are on a O-1 number line split into fractions, ask the children to put a 'lid' on the number line to turn it back into a fraction strip. E.g. on number line below they may think they are counting in sixths as there are 6 dashes but they can see the 5 parts (so fifths) when they add the 'lid'.
	If we placed two strips on the number line which strips would give the most equivalent fractions? Which have the least? Why? Draw out the links to multiplication and factors. Using the fractions strips and number lines ask children to compare fractions. What do they notice about the unit fractions with the biggest denominators? Can you find me 4 fractions that are more than a $1 / 2$ but less than a whole? What do you notice about all of the numerators in relation to the denominators?
	Mastery
	Put these fractions on the number line: $\frac{2}{3}, \frac{1}{2}, \frac{3}{6}, \frac{4}{9}$ 0 $\xrightarrow{1}$ Put these fractions on the number line: $\frac{4}{5}, \frac{7}{10}, \frac{5}{10}, \frac{2}{5}$ $\stackrel{+}{0}$ $\xrightarrow{1}$

	Identify the values of a, b, c and d Taken from - Mathematics guidance: Key stages 1 and 2 - Nonstatutory guidance for the National Curriculum in England Can they reason about which two whole numbers a mixed number will lie between? When they are confident with this, challenge children to estimate the position of fractions on an unmarked number line with just whole numbers marked. $\begin{array}{llll} 2 \frac{2}{9} & \frac{2}{3} & 3 \frac{3}{7} & 1 \frac{1}{5} \end{array}$ Taken from - Mathematics guidance: Key stages 1 and 2 - Non-statutory guidance for the National Curriculum in England
Convert mixed numbers to improper fractions	Recap counting using a fraction wall or a number line to record a given point as an improper fraction and a mixed number. Ask children to show you what point on the number line or the fraction wall $\frac{1}{5}$ is. Show children how we can convert without using a fraction wall. Use a
	Start with $\frac{9}{5}$ If we take 5 of those fifths we will make one whole. That leaves us with another $\frac{4}{5}$ This will become the mixed number $1 \frac{4}{5}$

	Mastery
	8 girls share 6 bars of chocolate equally. 12 boys share 9 bars of chocolate equally. Who gets more chocolate to eat, each boy or each girl? How do you know? Draw a diagram to explain your reasoning. Mastery with Greater Depth 8 girls share 6 bars of chocolate equally. 12 boys share 9 bars of chocolate equally. Clare says each girl got more to eat as there were fewer of them. Rob says each boy got more to eat as they had more chocolate to share. Explain why Clare and Rob are both wrong.
Add fractions	Using the fraction cards, ask children to complete calculations such as $\frac{2}{8}+\frac{4}{8}$ Ensure that they understand why the denominator doesn't change unless we are simplifying the answer at the end. Extend children's understanding to add beyond 1. Use fractions wall, number lines or bar models to help them to do this. Taken from - Mathematics guidance: Key stages 1 and 2 - Non-statutory guidance for the National Curriculum in England

Subtract fractions	Using the fraction cards, ask children to complete calculations such as $\frac{5}{8}-\frac{2}{8}$ Ensure that they understand that the denominator doesn't change Mastery with Greater Depth Peter wrote down two fractions. He subtracted the smaller fraction from the larger and got $\frac{1}{8}$ as the answer. Write down two fractions that Peter could have subtracted. Can you find another pair? Extend the children's understanding to calculate fractions greater than 1 Taken from - Mathematics guidance: Key stages 1 and 2 - Nonstatutory guidance for the National Curriculum in England

