Planning Overview

Year 4 Decimals and Money
Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten
Recognise and write decimal equivalents of any number of tenths or hundredths Recognise and write decimal equivalents to $1 / 4,1 / 2$ and $3 / 4$
Find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths Round decimals with one decimal place to the nearest whole number Compare numbers with the same number of decimal places up to two decimal places Solve simple measure and money problems involving fractions and decimals to two decimal places.

4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients) understand this as equivalent to making a number 10 or 100 times the size.

Bead strings have been used as the constant resource throughout this unit of work, but you may prefer to teach using Dienes. The 100 block represents the whole, the 10 sticks represent the tenths and the 1 blocks represent the hundredths.

Money will be included throughout this planning overview but you may prefer to use one of the resources above to teach decimals and then revisit and apply to money at the end of the unit of work.

	Teaching and Learning
Recap tenths from Y3	Recap tenths as a fraction and a decimal on a bead string. Why is Recognise that Recap that in 0.4 we have 0 whole numbers and a 4 in the tenths hundredths arise when dividing an object by one hundred and dividing tenths by ten

	Which number is closer to one whole 0.9 or 0.8? What do I add to 0.7 to make one whole? Which two of these numbers make one whole? $\begin{array}{llllll}0.9 & 0.3 & 0.1 & 0.7 & 0.8 & 0.2\end{array}$ 10 tenths make a whole or 10×10 p coins $=£ 1.00$ How would you make $£ 0.40$? 4×10 p How would you make $£ 0.60$? 6×10 p Extend beyond 1 and maintain the link with money, can children understand that 10 tenths make a whole? How many tenths would be in 1.2 ? 3.3 ? 10 ps in $£ 1.20, £ 3.30$? Can children partition decimal numbers in different ways? E.g. 3.3 could be 3 ones and 3 tenths, 2 ones and 13 tenths. $£ 3$ and 2×10 p, £2 and 12×10 p Which is bigger 32 tenths or 4 ones? $£ 3.20$ or $£ 4$?
Recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	Decide which resource you would like to introduce hundredths with e.g. money, bead strings or dienes. Discuss a single bead, penny or cube being $\frac{1}{100}$ (one out of 100). Ask children to show $\frac{3}{100^{\prime}} \frac{6}{100}$ Talk to children about representing this as a decimal. Why is $\frac{3}{100}$ 0.03 as a decimal? Because we have a 3 in the hundredths column, no tenths and no wholes. Ask children to show you 0.04, 0.07. How would we represent this as a fraction? Ask children to represent $\frac{10}{100}$ on their beadstrings. How do we show this as a decimal? Misconception -some children may automatically record this as 0.010 Support the children in making the link between tenths and hundredths, look closely at their $\frac{10}{100^{\prime}}$, how many tenths does this show? We write this as 0.1 which is 10 hundredths or 1 tenth. The link to money may support children in developing their understanding with this, e.g. 10 pennies is the same as 1 ten pence piece. Ask children to show this on a bead string - find me a tenth and count how many hundredths are in that tenth? How many hundredths are in 4 tenths? There are 40 hundredths in 4 tenths.

Count up and down in hundredths	Recap counting up and down in tenths. Looking at and relating to the sequence of counting in 1 s . Complete BEAM decimals jigsaw. Look at which digit changes as you move left/right, up/down on the grid. BEAM Maths of the Month Decimal Jigsaw Use a bead string as a counting stick and count up and down in hundredths from a variety of starting points. Children apply this to counting from different whole numbers e.g starting at 3 and counting back in hundredths, starting at 5.76 and counting on in hundredths. Apply this to money Start with an amount of money, add $£ 1$ s, 1 ps and 10 ps to continue a sequence. Spot the mistake...
Compare and order decimals	Comparing 2 decimals numbers Using a bead string and pegs to represent numbers, children to put pegs on decimals to represent: $0.1,0.01,0.3,0.34,0.9,0.09$ Which of these decimal numbers is largest, which is the smallest? Children move onto looking at the value of the digits in the most significant columns first. Using this strategy, they can order or compare numbers in the abstract. 'Sam thinks that 0.34 is bigger than 0.5 because it has more digits. Is he correct? Why?' Continue to make the links to money to support children's understanding.

	10s 1s $\mathbf{0 . 1 s}$ 1 2 1 2 10 $\div 10$ NCETM PD Materials Fluency questions - dividing by 10 and 100. Extend to missing number questions e.g. $23 \div$ \square $=2.3$ Greater Depth Can they reason about equivalent calculations e.g. True or False: $23.4 \div 100=2.34 \div 10$ and explain reasoning without calculating?
Link Decimals to fractions ($1 / 2$, $1 / 4,3 / 4$)	Use a bead string and split the string into halves. How many beads are in one of these halves? 50 beads out of 100 - how do we record this as a decimal? 0.5. So $1 / 2$ of our bead string is the same as 0.5 of our bead string. Repeat with a quarter of the bead string - how many beads? 25 out of 100. How do we record this as a decimal? 0.25 Repeat with $3 / 4$ of the bead string. How many beads is this? 75 out of 100 beads. How do we record this as a decimal? 0.75 Mathsticks - fractions and decimals mission impossible game The activity follows the theme of spotting rouge figures... in this case fractions that do not match to fraction decimals. It is easy to give this a the figures form a natural pair: Use money to explore fraction equivalence to decimals. Take a pound coin and ask how are we going to find $1 / 2$? Exchange $£ 1$ into 10×10 p coins. Show half is 50 p or $£ 0.50$. Now look at a $1 / 1 /$. Change the $£ 1$ into 10×10 p coins. Share equally between 4 to get $£ 0.20$. Exchange remaining 2×10 p coins into $1 p$ coins and share between 4 to get $£ 0.25$.

	Match each fraction to its decimal equivalent. $\begin{array}{\|cccc} \frac{1}{2} & \frac{4}{10} & \frac{3}{4} & \frac{1}{4} \\ 0.25 & 0.75 & 0.4 & 0.5 \end{array}$ Circle the equivalent fraction to 0.25 . $\begin{array}{llll} \frac{2}{5} & \frac{5}{2} & \frac{25}{100} & \frac{100}{25} \end{array}$
Solve simple measure and money problems involving fractions and decimals to two decimal places. Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Reinforce addition and subtraction bonds and related facts to 1 and 10 e.g. what would we need to add to 0.35 to make 1 ? What would we need to add to $£ 6.45$ to make $£ 10$? Extend to finding 4 related facts and then apply to missing numbers and money e.g. $£ 10-?=£ 4.50$ Mathsticks - decimal addition game Children should have been taught a range of mental strategies within the addition and subtraction unit of work. Children will need time to revisit these and apply to decimals and money problems. e.g. Sam pays for a bar of chocolate with a $£ 2$ coin. The chocolate cost $£ 1.35$, how much change did he get? Can the children count on or back to find the change? Extend to two-step problems. Sam buys two packets of crisps with a $£ 2$ coin and gets, 84 p change. How much does one packet of crisps cost? Sam buys a toy car for $£ 1.59$ and a pack of cards for $£ 1.54$, he pays with a $£ 10$ note, how much change does he get?
Solve Problems involving money	Use and extend children's understanding of coins. Can children recognise and find totals of amounts of coins? Can they use their mental strategies to find the totals efficiently? Can they scale their multiplication facts to answer questions in line with the mastery question below?

