Planning Overview

Year 6 Algebra
Use simple formulae
Generate and describe linear number sequences
Express missing number problems algebraically
Find pairs of numbers that satisfy an equation with two unknowns
Enumerate possibilities of combinations of two variables.

6AS/MD-4 Solve problems with 2 unknowns

| Introduction |
| :--- | :--- |
| to algebra |

	How many ways could you represent 10? How would you record the combinations on the page above? I can see 50 feet, what possible combinations could I have? Find 5 possibilities.
Use simple formulae	Simple formula using shape This is shape a. How would you describe this shape? And this one? What would the shapes below look like? $\begin{aligned} & 2 a+3 b \\ & a-b \\ & 3 a-2 b \end{aligned}$

	A theme park sells tickets online. Each ticket costs £24 There is a $£ 3$ charge for buying tickets. Which of these shows how to calculate the total cost, in pounds? I think of a number Can children start to represent ‘I think of number' questions algebraically in preparation for the next objective? I think of a number multiply by 3 and add 4, the answer is 13 . What was my starting number. if we wrote it how it is said it would be $n \times 3+4=13$ algebraically this would be written $3 n+4=13$ Can children create their own, "I think of a number..." questions for their partner write algebraically?
Finding unknowns in algebraic equations	Ask children to look at this problem and elicit the known information from it. $3 a+15=45$ We know the whole is 45 and we know that we have 3 equal unknown parts and a known part of 15 . Ask children to consider how we use the known information to help us to establish the unknown information. 'We need to subtract 15 from the 45 and then divide what is left into 3 parts. This will tell us what a is.' Children to solve similar simple algebraic equations e.g. Test questions below. $2 q+4=100$ Work out the value of \boldsymbol{q}.

	Alfie has some photographs printed. The cost is $£ 2.50$ for postage and 12 pence for each print. Alfie uses this formula for the total cost (C) in pence. $C=250+12 n$ \boldsymbol{n} stands for the number of photographs. The total cost for Alfie is $\mathbf{£ 6 . 7 0}$ How many photographs does he have printed? See if children can apply what they know to this balancing equation. $2 a+7=a+11$
	a 11
	What must the value of a be?
	Mastery Which of the following statements do you agree with? Explain your decisions. - The value 5 satisfies the symbol sentence $3 \times \square+2=17$ - The value 7 satisfies the symbol sentence $3+\square$ \square $\times 2=10+$ \square - The value 6 solves the equation $20-x=10$ The value 5 solves the equation $20 \div x=x-1$
	Mastery with Greater Depth Which of the following statements do you agree with? Explain your decisions. - There is a whole number that satisfies the symbol sentence $5 \times \square-3=42$ - There is a whole number that satisfies the symbol sentence $5+\square \times 3=42$ - There is a whole number that solves the equation $10-x=4 x$ - There is a whole number that solves the equation $20 \div x=x$

To enumerate
possibilities of
combinations
of two
variables

Children have calculated the number of possibilities at the end of the Ratio and Proportion unit. Can the children work systematically to find all of the possibilities and identify missing possibilities.

2 Adam chooses the colours for a new team shirt.
The shirt has two colours.

There are four colours to choose from: yellow, blue, white and red.

Write the two missing combinations.
The shirt could be:

- yellow and blue
- yellow and white
- yellow and red
- blue and white.
\qquad and \qquad
\qquad
$\overline{1 \text { mark }}$

Now extend to missing values within algebraic equations.

$$
3 a+b=45
$$

How many unknowns do we have?
a is unknown,
b is unknown,
we know the whole is 45 .

If we put this into a bar model we can see this in a less abstract way.

45			
a	a	a	b

Ask children to give a sensible assigned value to a. what will that make the value of b?

45			
$a=2$	$a=2$	$a=2$	$b=39$

Look at this problem from NCETM PD Materials
'4 pears and 5 lemons cost $£ 3.35$.
4 pears and 2 lemons cost $£ 2.30$.'

- Pictorial - one diagram for each piece of information

We need to establish what is the difference between those two lines of fruit.

The difference physically is 3 lemons, and the difference numerically is $£ 1.05$. So now we know that 3 lemons cost $£ 1.05$. we can divide $£ 1.05$ by 3 and work out the value of one lemon.

$£ 1.05$		
$35 p$	$35 p$	$35 p$

If we now know that each lemon is 35 p we can put that information back into each bar model.

p	p	p	p	1	1	1	1	1
				$35 p$				
			$£ 3.35$					
$£ 1.75$								

Now we need to work out how much 4 pears are to be able to work out what one pear is.

p	p	p	p	1	1	1	1	1
40p	40p	40p	40p	35p	35p	35p	35p	35p
£1.60				£1.75				
$£ 3.35$								

One lemon $=35 p$
One pear $=40$ p
We can check this by looking to see if we can make the total for the second line of fruit with our new fruit prices

p	p	p	p	1	1
$40 p$	$40 p$	$40 p$	$40 p$	$35 p$	$35 p$
2.30					

	The question below adds further challenge for the children as they haven't got one row or column containing 3 of the same item. 6. The diagram shows the total cost of the items in each row and column. Fill in the 2 missing costs. Children can use the top row and right-hand column as a starting point. There is a pear and banana in each group so at this stage we can represent them in their own bar model. The top row as an additional pear and is 20p more expensive than the right column which has an additional banana. We can deduce that a pear is $20 p$ more expensive than a banana. If we now look at the right-hand column of $2 b+p=95 p$, we can exchange a pear for a banana and take 20p off the total making $3 b=75$ p therefore $b=25$ p.
Solve problems with 2 unknowns and express this algebraically	Children now need to find the total of 2 unknowns. Use problems similar to those the children will have experienced in algebra and proportion to build on prior knowledge. a and b total 40 but a is 4 times larger than b. We could use a bar model or Cuisenaire to visualise this problem. a b

	This problem is from a past Level 6 SATs paper but some children may be able to explore a solution using a bar model. 4 Here are some equations. $\begin{aligned} & X+Y=50 \\ & Y+Z=70 \text { and } \\ & X+Z=80 \end{aligned}$ Find the value of \mathbf{Y}. $\begin{aligned} & X=30 \\ & Y=20 \\ & Z=50 \end{aligned}$
Finding 2 unknowns in problems with different structures	Explain to children that in the Cuisenaire activity we didn't know the colours of the 2 unknown rods. We only know the criteria that they had to fulfil. We can relate the same thinking to mathematical problems Explore this question from the ready to progress guidance 3. An adult ticket for the zoo costs $£ 2$ more than a child ticket. I spend a total of $£ 33$ buying 3 adult and 2 child tickets. a. How much does an adult ticket cost? b. How much does a child ticket cost? We know the total cost, we know how many of each ticket was sold, we know that the children's tickets were $£ 2$ each less than the adults' tickets. What we don't know are the 2 unknowns The cost of each child's ticket The cost of each adult's ticket Show the children how to use a bar model to elicit what we know. We know the whole is
	$£ 33$ We know we need 5 parts for 5 tickets
	c c a a
	We know that before we can work out each of the 5 parts, we need to consider that the children's tickets are $£ 2$ cheaper each which in turn means that the adults need to pay $£ 2$ more each. Let's take the $£ 6$ extra

	that the adu on to the		from	for no	dd it ba
			£27		
	5.40	5.40	5.40	5.40	5.40
	We need that we a Children's Adult's tic Work thro Year 6 ha are either more gold are gold?' Let's cons Number of Number o We also k Our whole Gold + 30 We need be able to	the $£ 2$ the $£$ st £5, £7.40 uestio 0 stars er. The silver. the 2 s rs the go e the out ta 2 equa	each took NC y s are are 30 differ and to	ket n ole a ateria an the awc it bac	ake sure inning. ars e whole e gold
			ole $=$		
	30				
	30	85			
		$d=115$		Sil	
	Ask childr P and $\mathrm{q}=$ P is 150 gr What is th	le pro q p and	e this		
Generate and describe linear number sequences	Give child the rule is 3, 6, 9, 12 Rule - incr 9, 5, 1, -3 Rule - dec Children to	num numbe 3 4 sequen	quenc ce lar to	them uestio	ain wha

The list below shows the years in which the Football World Cup as held since 1982:

1982	1987	1991	1996	2001	2006	2011

George says,

Explain how do you know.
Add in some sequences where children may need to think a bit harder about the sequence

4, 5, 7, 10, 14
Rule - the number that the value increases by goes up by 1 each time
5 The numbers in this sequence are first multiplied by 2 and then added by 3 each time.

Write the missing numbers.

$\overline{1 \text { mark }}$

Include the Fibonacci sequence and introduce the significance of this sequence to the children

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

Mastery

Ramesh is exploring two sequence-generating rules.
Rule A is: 'Start at 2, and then add on 5, and another 5, and another 5, and so on.'
Rule B is: 'Write out the numbers that are in the five times table, and then subtract 2 from each number.'

What's the same and what's different about the sequences generated by these two rules?

	Roshni and Darren are using sequence-generating rules. Roshni's rule is: 'Start at 4, and then add on 5, and another 5, and another 5, and so on.' Darren's rule is: 'Write out the numbers that are multiples of 5 , starting with 5 , and then subtract 1 from each number.' Roshni and Darren notice that the first few numbers in the sequences generated by each of their rules are the same. They think that all the numbers in the sequences generated by each of their rules will be the same. Do you agree? Explain your decision.
	Mastery with Greater Depth
	Ramesh is exploring three sequence-generating rules. Rule A is: 'Start at 30, and then add on 7, and another 7, and another 7, and so on.' Rule B is: 'Write out the numbers that are in the seven times table, and then add 2 to each number.' Rule C is: 'Start at 51, and then add on 4, and another 4, and another 4, and so on.' What's the same and what's different about the sequences generated by these three rules? Explain why any common patterns occur. Roshni and Darren are using sequence-generating rules. Roshni's rule is: 'Start at 5, and then add on 9, and another 9, and another 9, and so on.' Darren's rule is: 'Write out the numbers that are multiples of 3 , starting with 3 , and then subtract 1 from each number.' What might Roshni and Darren notice about the numbers in the sequences generated by each of these rules? Explain your reasoning.
nth term and formula for sequences	Ask children to build this pattern with match sticks How many matchsticks are needed for the first part of the pattern (1 ${ }^{\text {st }}$ term)? How many for the second pattern ($2^{\text {nd }}$ term)? What if children continued the pattern on for a $4^{\text {th }}$ time - how many matchsticks would be needed now? Ask children to complete a table showing the information from the pattern that they have already created.

Term	Matchsticks
1	4
2	7
3	10
4	13

What do the children notice about the number of matchsticks? How many matchsticks are we adding every time we want a new term? We are adding another 3 matchsticks.

Using this can they state how many matchsticks the $5^{\text {th }}$ term would have? Ask children what if we wanted to know how many matchsticks the $10^{\text {th }}$ term had or even the $100^{\text {th }}$? It would take us a long time to add 3 every time.

Is there another pattern that we can find in the table above? Look at the numbers in the term section compared to the number next to it in the number of matchsticks row.

How can we get from 1 to 4 ?
How can we get from 2 to 7 ?
How can we get to 3 to 10?
Explain to children that what we do to the first numbers we need to do the same thing to the second and third pairs of numbers.

If we multiplied 1 by 3 and added $1=4$
If we did the same thing to the numbers in the other rows, then we would get the correct answer
$2 \times 3+1=7$
$3 \times 3+1=10$
$4 \times 3+1=13$
How can this help us to work out the number of matchsticks in the $10^{\text {th }}$ term?

We need to start with 10 because it is the number of the term we are interested in and times that by 3 and then add 1 . We should use 31 matchsticks in the $10^{\text {th }}$ term.

Ask children to work out how many matchsticks would be needed for the $100^{\text {th }}$ term?

We can now work out how many matchsticks are needed for any of the pieces of the pattern. Explain to children that this is called the nth term.
n - is whatever term you are interested in and $\mathrm{x} 3+1$ is what we do to that nth pattern piece to work out the number of matchsticks, this can be written as $3 n+1$.

	Can the children explore the patterns below in the same way? generate and describe linear number sequences Children should experience activities such as; A number sequence is made from counters. There are 7 counters in the third number. How many counters in the 6th number? the 20th...? Write a formula for the number of counters in the nth number in the sequence. Ask children to create a table for this pattern taken from the NCETM and to establish what the rule is for the nth term.
	Term 1 2 3 4 5 Number in the sequence 1 4 7 10 13
	This nth term is $3 n-2$. Children may not spot this straight away, it may help to draw the terms as arrays to help spot the link between the 3 times table and the fact that 2 is always taken away from the array. Now ask children to apply this to number sequences to establish any numerical value in the number sequence. Apply to a range of SATs questions

